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Segmented Sort (SegSort)

• Perform a segment-by-segment sort on a given array 
composed of multiple segments
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seg_ptr = 0 3 5 7
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Segmented sort



Why Segmented Sort?

• Many applications need to process (e.g., sort) a large 
amount of independent arrays, due to: (1) dataset 
properties, (2) algorithm characteristics
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Segment statistics from squaring 

one matrix in SpGEMM*

Segment statistics from 1st

iteration in SAC*

* SpGEMM: Sparse General Matrix-Matrix Multiplication; SAC: Suffix Array Construction
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Segment statistics from squaring 

one matrix in SpGEMM*

Segment statistics from 1st

iteration in SAC*

We need an efficient way to deal with the 

large amount of independent short arrays.

* SpGEMM: Sparse General Matrix-Matrix Multiplication; SAC: Suffix Array Construction



Existing Segmented Sort

• Global sort has received much more fanfare!

• Many tools are evolved from global sort; however, there 
are also problems
– Problem 1: Time complexity
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The complexity of the global sort is 

𝑶(𝑵𝒍𝒐𝒈𝑵)*

The complexity of this segsort is 

𝑶
𝑵

𝒏
𝒏𝒍𝒐𝒈𝒏 ≈ 𝑶(𝑵𝒍𝒐𝒈𝒏)*

* For generality, the sorting algorithms are all comparison-based.

SegSort, evolved from global sort, usually exhibits higher 

complexity, e.g., segsort from modernGPU and CUSP

input

solved by



Existing Segmented Sort

• Global sort has received much more fanfare!

• Many tools are evolved from global sort; however, there 
are also problems
– Problem 1: Time complexity

– Problem 2: Runtime boundary checking overhead
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thread blocks

input

Every thread needs to check 

boundary of segments for

every comparison

Some SegSort needs to perform runtime boundary checking, 

causing additional overhead, e.g., segsort from modernGPU



Existing Segmented Sort

• Global sort has received much more fanfare!

• Many tools are evolved from global sort; however, there 
are also problems
– Problem 1: Time complexity

– Problem 2: Runtime boundary checking overhead

– Problem 3: Underutilized resources
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input

thread blocks
…

Many threads might be idle, 

especially when the segments 

are generally short

Some SegSort simply assigns each segment to each thread 

block, leading to idle resources, e.g., segsort from CUB



Fast Segmented Sort (this work)
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We propose an adaptive segmented sort mechanism 

for GPUs: (1) differentiated methods for different 

segments, (2) an algorithm supporting variable data-

thread binding and thread communication.



Outline

• Introduction

• Motivation

• Our Method
– GPU SegSort Mechanism

– GPU Register-based Sort

– Other Techniques & Opt.

• Evaluation
– Kernel Performance

– Kernel in Real Applications
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Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design
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Segments (seg_ptr & input)

unit-bin warp-bin block-bin grid-bin

t = thread
w = warp
b = block



Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design
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Segments (seg_ptr & input)

unit-bin warp-bin block-bin grid-bin

t = thread
w = warp
b = block

• Hierarchical binning 

(register/smem/gmem levels)
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Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-merge
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Segments (seg_ptr & input)
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Global memory: sorted segments (output)

reg-sort

smem-merge

• Directly copy segments to 

the result in global memory



Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design
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Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-mergestriped-write

• Only use registers as “cache”

• Data-thread binding/exchange

• Memory access optimization



Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design
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Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-mergestriped-write

• Use registers + smem as “cache”

• MergePath algorithm for load 

balance



Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design
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Segments (seg_ptr & input)
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GPU Register-based Sort

• Sorting networks usually serve as building blocks of efficient 
parallel sort

• How to bind the data items (operands) to different threads?

17
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Each thread uses too 

many registers (high 

register pressure)

rg0

rg0

rg0

rg0

tid=0

tid=1

tid=2

tid=3

rg0

rg1

rg2

rg3

tid=0

Each comparison is 

performed twice (wasted 

computing resources)

Both need to figure out data exchange 

patterns among registers and threads



GPU Register-based Sort

• Propose a general way to solve the data-thread binding 
problem at GPU register level

• Primitive pattern
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_exch_primitive(rg0, rg1, tmask, swbit) 

Two data items are bound to each thread

Tells how threads communicate

Tells which thread swaps registers

rg0
rg1
rg0
rg1

tid=0

tid=1

(4)
(3)
(2)
(1)

(1)
(2)
(3)
(4)

_exch_primtive(rg0,rg1,0x1,0) Implementation Details

① _shuf_xor(rg1, 0x1);  // Shuffle data in rg1
② cmp_swp(rg0, rg1);      // Compare data of rg0 & rg1 locally
③ if( bfe(tid,0) ) swp(rg0, rg1);   // Swap data of rg0 & rg1 if 0 bit of tid is set
④ _shuf_xor(rg1, 0x1);  // Shuffle data in rg1

②

(4)
(1)
(2)
(3)

(1)
(4)
(2)
(3)

rg0(4)
rg1(3)
rg0(2)
rg1(1)

①

(1)
(4)
(3)
(2)

③

(1)
(2)
(3)
(4)

④



GPU Register-based Sort

• Other patterns, then, can be solved by transformation and 
the primitive patterns

• Intersecting Pattern
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_exch_intxn(rg0, rg1, …, rgk-1, tmask, swbit) 

Any number of data items are bound to each thread

Tells how threads communicate

Tells which thread swaps registers

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

t0

t1

if(bfe(tid,swbit))
swp(rg0,rgk-2)
swp(rg1,rgk-1)
…

Applying 
primitive 

patterns on 
related pairs

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

Transforming 
via swapping



GPU Register-based Sort

• Other patterns, then, can be solved by transformation and 
the primitive patterns

• Parallel Pattern
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_exch_paral(rg0, rg1, …, rgk-1, tmask, swbit) 

Any number of data items are bound to each thread

Tells how threads communicate

Tells which thread swaps registers

if(bfe(tid,swbit))
swp(rg0,rg1)
swp(rg2,rg3)
…

Applying 
primitive 

patterns on 
related pairs

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

Transforming 
via swapping

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

t0

t1



GPU Register-based Sort

• Also, we can solve patterns without thread communication
– “Communication” only occurs between registers

• Local Pattern
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_exch_local(rg0, rg1, …, rgk-1, rmask)

Any number of data items are bound to each thread

Tells how registers compare with each other

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

t0

t1



GPU Register-based Sort: An Example

• Represent the sorting network by using our generalized 
patterns
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reg_sort(data items=8, thread num=4)

①_exch_local(rg0,rg1);

②_exch_intxn(rg0,rg1,0x1,0);

③_exch_local(rg0,rg1);

④_exch_intxn(rg0,rg1,0x3,1);

⑤_exch_paral(rg0,rg1,0x1,0);

⑥_exch_local(rg0, rg1);

t0

t1

t2

t3

rg0

rg1

rg0

rg1

rg0

rg1

rg0

rg1

① ② ③ ④ ⑤ ⑥

Read our paper and see more details of (1) how to automatically 

decide which patterns to use, (2) how to order the patterns, (3) 

how to compute the parameters (e.g., tmask)



Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access  

24
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Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access  

• Shared memory based merge solution
– MergePath algorithm [`12] for load balance
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Experiment Platforms

• nVidia Tesla K80 (Kepler-GK210), 2496 CUDA cores @ 824 
MHz, 240 GB/s bandwidth

• nVidia TitanX (Pascal-GP102), 3584 CUDA cores @ 1531 
MHz, 480 GB/s bandwidth

• We compare our SegSort to other tools from libraries of
a. ModernGPU v.2.0 (boundary checking, global sort based)

b. CUSP* v.0.5.0 (global sort based)

c. CUB v.1.6.4 (segment per block)

– Generating datasets to mimic different segment distributions

• We compare SAC and SpGEMM optimized by our SegSort to
a. cuDPP v.2.3 for SAC

b. cuSPARSE [`16], CUSP [`14], bhSPARSE [`14] for SpGEMM

– Using real input datasets from NCBI library and UF matrix collection
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* CUSP performs segmented sort by using THRUST sort twice. We extract this as a stand-alone function. 



Kernel Performance Tuning

• Binding different number of data items to threads 
(reg_sort)

31

ACM ICS 2017, Chicago, IL, USA

Kepler GPU

Striped 
access

Coalesced 
access



Kernel Performance Tuning

• Binding different number of data items to threads 
(reg_sort)

31

ACM ICS 2017, Chicago, IL, USA

Kepler GPU

Striped 
access

Coalesced 
access



Kernel Performance Tuning

• Binding different number of data items to threads 
(reg_sort)
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Pascal GPU

Striped 
access

Coalesced 
access



Kernel Performance Tuning

• Binding different number of data items to threads 
(reg_sort)

33

ACM ICS 2017, Chicago, IL, USA

Pascal GPU
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SegSort Performance

• Fixing total data size w/ variable segment number and size

– Our SegSort is proficient in solving a large amount of segments, 
achieving an average of 3.2x speedups over the better performed 
baseline mgpu-segsort on Pascal
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SegSort Performance

• Fixing total data size w/ variable segment number and size

– Our SegSort is proficient in solving a large amount of segments, 
achieving an average of 3.2x speedups over the better performed 
baseline mgpu-segsort on Pascal

– The performance of SegSorts, evolved from global sort, is more 
affected by the total array size 35
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SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37
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• CUB is limited by processing only 

65536 segments

• We can achieve up to 87x speedups 
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• We can achieve up to 4x speedups 

Speedups



SegSort in Real-world Applications

• Suffix Array: store lexicographically sorted indices of all 
suffixes of a given sequence

• Our method is based on the prefix doubling algorithm [`93]
– Deducing the orders of 2h strings from the calculated orders of h

strings
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SegSort in Real-world Applications

Sparse Matrix-Matrix Multiplication (Sp   by its indices of rows and 

columns

• Our method is using the Expansion, Seg-Sorting and 
Compression (ESSC) algorithm [`12]
– Sorting an intermediate sparse matrix 𝐶 by its indices of rows and 

columns
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Conclusion

• We identified the importance of segmented sort on 
various applications, and proposed efficient approaches 
on GPUs

• Our GPU segmented sort method outperforms other 
state-of-the-art approaches in libraries of CUB, CUSP, 
ModernGPU

• We can see that the capacity of registers is important for 
segmented sort in modern GPUs

• Please visit our GIT repo 
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https://github.com/vtsynergy

Thank you! More from synergy.cs.vt.edu
Email to kaixihou@vt.edu


