
Fast Segmented Sort on GPUs

ACM ICS 2017, Chicago, IL, USA

Kaixi Hou†, Weifeng Liu‡, Hao Wang†, Wu-chun Feng†

†{kaixihou, hwang121, wfeng}@vt.edu ‡ weifeng.liu@nbi.ku.dk

Segmented Sort (SegSort)

• Perform a segment-by-segment sort on a given array
composed of multiple segments

2

ACM ICS 2017, Chicago, IL, USA

4 1 2 11 8 1 6 5input =

seg_ptr = 0 3 5 7

output = 1 2 4 8 11 1 6 5

Segmented sort

Why Segmented Sort?

• Many applications need to process (e.g., sort) a large
amount of independent arrays, due to: (1) dataset
properties, (2) algorithm characteristics

3

ACM ICS 2017, Chicago, IL, USA

Segment statistics from squaring

one matrix in SpGEMM*

Segment statistics from 1st

iteration in SAC*

* SpGEMM: Sparse General Matrix-Matrix Multiplication; SAC: Suffix Array Construction

Why Segmented Sort?

• Many applications need to process (e.g., sort) a large
amount of independent arrays, due to: (1) dataset
properties, (2) algorithm characteristics

3

ACM ICS 2017, Chicago, IL, USA

Segment statistics from squaring

one matrix in SpGEMM*

Segment statistics from 1st

iteration in SAC*

We need an efficient way to deal with the

large amount of independent short arrays.

* SpGEMM: Sparse General Matrix-Matrix Multiplication; SAC: Suffix Array Construction

Existing Segmented Sort

• Global sort has received much more fanfare!

• Many tools are evolved from global sort; however, there
are also problems
– Problem 1: Time complexity

5

ACM ICS 2017, Chicago, IL, USA

n n n n n n n n n n

N N

The complexity of the global sort is

𝑶(𝑵𝒍𝒐𝒈𝑵)*

The complexity of this segsort is

𝑶
𝑵

𝒏
𝒏𝒍𝒐𝒈𝒏 ≈ 𝑶(𝑵𝒍𝒐𝒈𝒏)*

* For generality, the sorting algorithms are all comparison-based.

SegSort, evolved from global sort, usually exhibits higher

complexity, e.g., segsort from modernGPU and CUSP

input

solved by

Existing Segmented Sort

• Global sort has received much more fanfare!

• Many tools are evolved from global sort; however, there
are also problems
– Problem 1: Time complexity

– Problem 2: Runtime boundary checking overhead

6

ACM ICS 2017, Chicago, IL, USA

thread blocks

input

Every thread needs to check

boundary of segments for

every comparison

Some SegSort needs to perform runtime boundary checking,

causing additional overhead, e.g., segsort from modernGPU

Existing Segmented Sort

• Global sort has received much more fanfare!

• Many tools are evolved from global sort; however, there
are also problems
– Problem 1: Time complexity

– Problem 2: Runtime boundary checking overhead

– Problem 3: Underutilized resources

7

ACM ICS 2017, Chicago, IL, USA

input

thread blocks
…

Many threads might be idle,

especially when the segments

are generally short

Some SegSort simply assigns each segment to each thread

block, leading to idle resources, e.g., segsort from CUB

Fast Segmented Sort (this work)

8

ACM ICS 2017, Chicago, IL, USA

We propose an adaptive segmented sort mechanism

for GPUs: (1) differentiated methods for different

segments, (2) an algorithm supporting variable data-

thread binding and thread communication.

Outline

• Introduction

• Motivation

• Our Method
– GPU SegSort Mechanism

– GPU Register-based Sort

– Other Techniques & Opt.

• Evaluation
– Kernel Performance

– Kernel in Real Applications

9

ACM ICS 2017, Chicago, IL, USA

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

unit-bin warp-bin block-bin grid-bin

t = thread
w = warp
b = block

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

unit-bin warp-bin block-bin grid-bin

t = thread
w = warp
b = block

• Hierarchical binning

(register/smem/gmem levels)

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-merge

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-merge

• Directly copy segments to

the result in global memory

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-mergestriped-write

• Only use registers as “cache”

• Data-thread binding/exchange

• Memory access optimization

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-mergestriped-write

• Use registers + smem as “cache”

• MergePath algorithm for load

balance

Adaptive GPU SegSort Mechanism

• Overview of our proposed GPU SegSort design

10

ACM ICS 2017, Chicago, IL, USA

Segments (seg_ptr & input)

… …

w w w w
b b

unit-bin warp-bin block-bin grid-bin

w

… … … …

wt

… …

t t t

t = thread
w = warp
b = block

… … … …

w w w w
b b

ww

Global memory: sorted segments (output)

reg-sort

smem-mergestriped-write

GPU Register-based Sort

• Sorting networks usually serve as building blocks of efficient
parallel sort

• How to bind the data items (operands) to different threads?

17

ACM ICS 2017, Chicago, IL, USA

u
n

so
rt

ed

so
rt

ed

7

3

1

2

6

0

5

4

0

1

2

3

4

5

6

7

GPU Register-based Sort

• Sorting networks usually serve as building blocks of efficient
parallel sort

• How to bind the data items (operands) to different threads?

17

ACM ICS 2017, Chicago, IL, USA

u
n

so
rt

ed

so
rt

ed

7

3

1

2

6

0

5

4

0

1

2

3

4

5

6

7

Each thread uses too

many registers (high

register pressure)

rg0

rg0

rg0

rg0

tid=0

tid=1

tid=2

tid=3

rg0

rg1

rg2

rg3

tid=0

Each comparison is

performed twice (wasted

computing resources)

Both need to figure out data exchange

patterns among registers and threads

GPU Register-based Sort

• Propose a general way to solve the data-thread binding
problem at GPU register level

• Primitive pattern

19

ACM ICS 2017, Chicago, IL, USA

_exch_primitive(rg0, rg1, tmask, swbit)

Two data items are bound to each thread

Tells how threads communicate

Tells which thread swaps registers

rg0
rg1
rg0
rg1

tid=0

tid=1

(4)
(3)
(2)
(1)

(1)
(2)
(3)
(4)

_exch_primtive(rg0,rg1,0x1,0) Implementation Details

① _shuf_xor(rg1, 0x1); // Shuffle data in rg1
② cmp_swp(rg0, rg1); // Compare data of rg0 & rg1 locally
③ if(bfe(tid,0)) swp(rg0, rg1); // Swap data of rg0 & rg1 if 0 bit of tid is set
④ _shuf_xor(rg1, 0x1); // Shuffle data in rg1

②

(4)
(1)
(2)
(3)

(1)
(4)
(2)
(3)

rg0(4)
rg1(3)
rg0(2)
rg1(1)

①

(1)
(4)
(3)
(2)

③

(1)
(2)
(3)
(4)

④

GPU Register-based Sort

• Other patterns, then, can be solved by transformation and
the primitive patterns

• Intersecting Pattern

20

ACM ICS 2017, Chicago, IL, USA

_exch_intxn(rg0, rg1, …, rgk-1, tmask, swbit)

Any number of data items are bound to each thread

Tells how threads communicate

Tells which thread swaps registers

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

t0

t1

if(bfe(tid,swbit))
swp(rg0,rgk-2)
swp(rg1,rgk-1)
…

Applying
primitive

patterns on
related pairs

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

Transforming
via swapping

GPU Register-based Sort

• Other patterns, then, can be solved by transformation and
the primitive patterns

• Parallel Pattern

21

ACM ICS 2017, Chicago, IL, USA

_exch_paral(rg0, rg1, …, rgk-1, tmask, swbit)

Any number of data items are bound to each thread

Tells how threads communicate

Tells which thread swaps registers

if(bfe(tid,swbit))
swp(rg0,rg1)
swp(rg2,rg3)
…

Applying
primitive

patterns on
related pairs

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

Transforming
via swapping

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

t0

t1

GPU Register-based Sort

• Also, we can solve patterns without thread communication
– “Communication” only occurs between registers

• Local Pattern

22

ACM ICS 2017, Chicago, IL, USA

_exch_local(rg0, rg1, …, rgk-1, rmask)

Any number of data items are bound to each thread

Tells how registers compare with each other

rg0
rg1

rgk-2
rgk-1
rg0
rg1

rgk-2
rgk-1

t0

t1

GPU Register-based Sort: An Example

• Represent the sorting network by using our generalized
patterns

23

ACM ICS 2017, Chicago, IL, USA

reg_sort(data items=8, thread num=4)

①_exch_local(rg0,rg1);

②_exch_intxn(rg0,rg1,0x1,0);

③_exch_local(rg0,rg1);

④_exch_intxn(rg0,rg1,0x3,1);

⑤_exch_paral(rg0,rg1,0x1,0);

⑥_exch_local(rg0, rg1);

t0

t1

t2

t3

rg0

rg1

rg0

rg1

rg0

rg1

rg0

rg1

① ② ③ ④ ⑤ ⑥

Read our paper and see more details of (1) how to automatically

decide which patterns to use, (2) how to order the patterns, (3)

how to compute the parameters (e.g., tmask)

Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access

24

ACM ICS 2017, Chicago, IL, USA

1 2
3 4
5 6
7 8

input

rg0 rg1

t0

t1

t2

t3

Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access

24

ACM ICS 2017, Chicago, IL, USA

1 2
3 4
5 6
7 8

input

rg0 rg1

t0

t1

t2

t3

Striped-access

Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access

24

ACM ICS 2017, Chicago, IL, USA

1 2
3 4
5 6
7 8

input

rg0 rg1

t0

t1

t2

t3

1 2
4 3
5 6
8 7

swap

1 3
4 2
5 7
8 6

shuf_xor(rg1,0x1)

1 3
2 4
5 7
6 8

1 3
2 4
7 5
8 6

swap swap

1 5
2 6
7 3
8 4

shuf_xor(rg1,0x2)

swapexchange exchange

1 5
2 6
3 7
4 8

output

Stride=1 Stride=2Striped-access

Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access

24

ACM ICS 2017, Chicago, IL, USA

1 2
3 4
5 6
7 8

input

rg0 rg1

t0

t1

t2

t3

1 2
4 3
5 6
8 7

swap

1 3
4 2
5 7
8 6

shuf_xor(rg1,0x1)

1 3
2 4
5 7
6 8

1 3
2 4
7 5
8 6

swap swap

1 5
2 6
7 3
8 4

shuf_xor(rg1,0x2)

swapexchange exchange

1 5
2 6
3 7
4 8

output

Stride=1 Stride=2Striped-access Coalesced-access

Other Techniques & Optimizations

• A hierarchical binning
– Using warp vote function __balloc() and __popc() at warp level

– Using shared memory at thread-block level

• Better locality by optimizing access pattern
– Transforming striped write to coalesced memory access

• Shared memory based merge solution
– MergePath algorithm [`12] for load balance

24

ACM ICS 2017, Chicago, IL, USA

1 2
3 4
5 6
7 8

input

rg0 rg1

t0

t1

t2

t3

1 2
4 3
5 6
8 7

swap

1 3
4 2
5 7
8 6

shuf_xor(rg1,0x1)

1 3
2 4
5 7
6 8

1 3
2 4
7 5
8 6

swap swap

1 5
2 6
7 3
8 4

shuf_xor(rg1,0x2)

swapexchange exchange

1 5
2 6
3 7
4 8

output

Stride=1 Stride=2Striped-access Coalesced-access

Outline

• Introduction

• Motivation

• Our Method
– GPU SegSort Mechanism

– GPU Register-based Sort

– Other Techniques & Opt.

• Evaluation
– Kernel Performance

– Kernel in Real Applications

29

ACM ICS 2017, Chicago, IL, USA

Experiment Platforms

• nVidia Tesla K80 (Kepler-GK210), 2496 CUDA cores @ 824
MHz, 240 GB/s bandwidth

• nVidia TitanX (Pascal-GP102), 3584 CUDA cores @ 1531
MHz, 480 GB/s bandwidth

• We compare our SegSort to other tools from libraries of
a. ModernGPU v.2.0 (boundary checking, global sort based)

b. CUSP* v.0.5.0 (global sort based)

c. CUB v.1.6.4 (segment per block)

– Generating datasets to mimic different segment distributions

• We compare SAC and SpGEMM optimized by our SegSort to
a. cuDPP v.2.3 for SAC

b. cuSPARSE [`16], CUSP [`14], bhSPARSE [`14] for SpGEMM

– Using real input datasets from NCBI library and UF matrix collection

30

ACM ICS 2017, Chicago, IL, USA

* CUSP performs segmented sort by using THRUST sort twice. We extract this as a stand-alone function.

Kernel Performance Tuning

• Binding different number of data items to threads
(reg_sort)

31

ACM ICS 2017, Chicago, IL, USA

Kepler GPU

Striped
access

Coalesced
access

Kernel Performance Tuning

• Binding different number of data items to threads
(reg_sort)

31

ACM ICS 2017, Chicago, IL, USA

Kepler GPU

Striped
access

Coalesced
access

Kernel Performance Tuning

• Binding different number of data items to threads
(reg_sort)

33

ACM ICS 2017, Chicago, IL, USA

Pascal GPU

Striped
access

Coalesced
access

Kernel Performance Tuning

• Binding different number of data items to threads
(reg_sort)

33

ACM ICS 2017, Chicago, IL, USA

Pascal GPU

Striped
access

Coalesced
access

SegSort Performance

• Fixing total data size w/ variable segment number and size

– Our SegSort is proficient in solving a large amount of segments,
achieving an average of 3.2x speedups over the better performed
baseline mgpu-segsort on Pascal

35

ACM ICS 2017, Chicago, IL, USA

Kepler GPU Pascal GPU

(268m) (671k) (336k) (168k)(224k) (134k) (268m) (671k) (336k) (168k)(224k) (134k)

Segment size (segment number)

SegSort Performance

• Fixing total data size w/ variable segment number and size

– Our SegSort is proficient in solving a large amount of segments,
achieving an average of 3.2x speedups over the better performed
baseline mgpu-segsort on Pascal

– The performance of SegSorts, evolved from global sort, is more
affected by the total array size 35

ACM ICS 2017, Chicago, IL, USA

Kepler GPU Pascal GPU

(268m) (671k) (336k) (168k)(224k) (134k) (268m) (671k) (336k) (168k)(224k) (134k)

Segment size (segment number)

SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37

ACM ICS 2017, Chicago, IL, USA

64.0

33.0

1.9

48.5

17.4

Kepler
GPU

Pascal
GPU

87.0

47.8

8.5

67.4

28.2

vs. CUB vs. CUSP vs. ModernGPU

Larger max length

M
o

re
 s

m
al

l s
eg

m
en

ts
A

lp
h

a

Max Segment Size

Speedups

SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37

ACM ICS 2017, Chicago, IL, USA

64.0

33.0

1.9

48.5

17.4

Kepler
GPU

Pascal
GPU

87.0

47.8

8.5

67.4

28.2

vs. CUB vs. CUSP vs. ModernGPU

Larger max length

M
o

re
 s

m
al

l s
eg

m
en

ts
A

lp
h

a

Max Segment Size

• CUB is limited by processing only

65536 segments

• We can achieve up to 87x speedups

Speedups

SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37

ACM ICS 2017, Chicago, IL, USA

64.0

33.0

1.9

48.5

17.4

Kepler
GPU

Pascal
GPU

87.0

47.8

8.5

67.4

28.2

13.0

8.3

3.5

10.6

5.9

17.0

10.5

4.0

13.7

7.2

vs. CUB vs. CUSP vs. ModernGPU

Larger max length

M
o

re
 s

m
al

l s
eg

m
en

ts
A

lp
h

a

Max Segment Size

Speedups

SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37

ACM ICS 2017, Chicago, IL, USA

64.0

33.0

1.9

48.5

17.4

Kepler
GPU

Pascal
GPU

87.0

47.8

8.5

67.4

28.2

13.0

8.3

3.5

10.6

5.9

17.0

10.5

4.0

13.7

7.2

vs. CUB vs. CUSP vs. ModernGPU

Larger max length

M
o

re
 s

m
al

l s
eg

m
en

ts
A

lp
h

a

Max Segment Size

• CUSP conducts global sort twice

• We can achieve up to 17x speedups

Speedups

SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37

ACM ICS 2017, Chicago, IL, USA

64.0

33.0

1.9

48.5

17.4

Kepler
GPU

Pascal
GPU

87.0

47.8

8.5

67.4

28.2

13.0

8.3

3.5

10.6

5.9

17.0

10.5

4.0

13.7

7.2

3.0

2.0

1.0

2.5

1.5

4.0

2.5

1.0

3.2

1.7

vs. CUB vs. CUSP vs. ModernGPU

Larger max length

M
o

re
 s

m
al

l s
eg

m
en

ts
A

lp
h

a

Max Segment Size

Speedups

SegSort Performance

• Fixing total data size w/ segments of power-law distribut.

37

ACM ICS 2017, Chicago, IL, USA

64.0

33.0

1.9

48.5

17.4

Kepler
GPU

Pascal
GPU

87.0

47.8

8.5

67.4

28.2

13.0

8.3

3.5

10.6

5.9

17.0

10.5

4.0

13.7

7.2

3.0

2.0

1.0

2.5

1.5

4.0

2.5

1.0

3.2

1.7

vs. CUB vs. CUSP vs. ModernGPU

Larger max length

M
o

re
 s

m
al

l s
eg

m
en

ts
A

lp
h

a

Max Segment Size

• ModernGPU has runtime boundary

checking overhead

• We can achieve up to 4x speedups

Speedups

SegSort in Real-world Applications

• Suffix Array: store lexicographically sorted indices of all
suffixes of a given sequence

• Our method is based on the prefix doubling algorithm [`93]
– Deducing the orders of 2h strings from the calculated orders of h

strings

43

ACM ICS 2017, Chicago, IL, USA

Kepler
GPU

Pascal
GPU

SegSort in Real-world Applications

Sparse Matrix-Matrix Multiplication (Sp by its indices of rows and

columns

• Our method is using the Expansion, Seg-Sorting and
Compression (ESSC) algorithm [`12]
– Sorting an intermediate sparse matrix 𝐶 by its indices of rows and

columns

44

ACM ICS 2017, Chicago, IL, USA

SegSort in Real-world Applications

Sparse Matrix-Matrix Multiplication (Sp by its indices of rows and

columns

• Our method is using the Expansion, Seg-Sorting and
Compression (ESSC) algorithm [`12]
– Sorting an intermediate sparse matrix 𝐶 by its indices of rows and

columns

44

ACM ICS 2017, Chicago, IL, USA

Kepler
GPU

Pascal
GPU

Conclusion

• We identified the importance of segmented sort on
various applications, and proposed efficient approaches
on GPUs

• Our GPU segmented sort method outperforms other
state-of-the-art approaches in libraries of CUB, CUSP,
ModernGPU

• We can see that the capacity of registers is important for
segmented sort in modern GPUs

• Please visit our GIT repo

46

ACM ICS 2017, Chicago, IL, USA

https://github.com/vtsynergy

Thank you! More from synergy.cs.vt.edu
Email to kaixihou@vt.edu

