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Sparse Matrix Storage

• Sparse matrix: the majority of entries are zeros

• An efficient storage only records nonzero entries

– Need to ignore zero entries and put all nonzeros together
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Sparse Matrix-Vector Multiplication (SpMV)

• Problem definition: multiply a sparse matrix A and a dense 
vector x, and return the result as a dense vector y
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Factors Affecting SpMV Performance

• Storage formats of sparse matrix A
– CSR, ELLPACK, DIA, COO, BCCOO, BRC, CSR5, etc.

• Parallelization strategies
– Different formats correspond to different algorithms

– Even same format can lead to different parallel strategies, e.g., 
granularities of parallelism, optimizations, etc. 

• Input sparse matrices themselves
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Motivating Examples

• How input sparse matrices and parallelization strategies 
affect performance? 
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Outline

• Sparse Matrix and SpMV

• Motivation

• Background
– CSR format

• Reconfigurable SpMV Method
– Binning schemes

– Kernel choices

• SpMV Data Mining Framework 

• Evaluations & Conclusion
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Compressed Sparse Row (CSR) Format

• Widely-used sparse matrix format
– Store row pointers, column indices, and nonzero values
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Reconfigurable SpMV Method

• Overview of our SpMV method
– Binning schemes and kernels can be customized
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Binning Schemes

• For load balance, we group (permute) rows into different 
bins, according to their nonzero numbers

• However, how to choose correct granularities for binning?
– Small granularities lead to high binning overhead

– Large granularities lead to high row variance in the same bin 
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Binning Schemes

• In our method, we treat multiple neighboring rows as a 
single “virtual” row
– We have a set of candidate granularity units (denoted as U) to 

determine the number of neighboring rows
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Binning Schemes

• In our method, we treat multiple neighboring rows as a 
single “virtual” row
– We have a set of candidate granularity units (denoted as U) to 

determine the number of neighboring rows

• Better locality, throughput, etc.
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Kernel Choices

• Different SpMV kernels to process different types of rows
– Assign a row to one thread

– Assign a row to multiple threads (wavefront-level)

– Assign a row to multiple wavefronts (thread-block-level)
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Kernel Choices

• We use up to a thread block to process one nonzero row

• Current work only focuses on short and medium row sizes
– Our bin-based method can easily be extended to support long 

rows (e.g., dynamic parallelism based method)
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SpMV Data Mining Framework

• Overview of our data mining framework to look for the 
optimal binning policies and SpMV kernels
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Classification Tools

• The classification tool is C5.0 for data mining *

• We select over 2K sparse matrices from the University of 
Florida sparse matrix collection as the training set 
– 75% are used for training 

– The rest are used for testing 

• The error rate of learning is 5~15%
– 1st stage of learning (for binning schemes) is around 5% 

– 2nd stage (for parallelization strategies) is less than 15%

• Finally, we have two generated rule-sets
– One is for how to select binning schemes

– Another is for how to select kernels for each bin
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* https://www.rulequest.com/see5-info.html
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Outline
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Benchmark Suite

• We select 16 matrices from the University of Florida 
sparse matrix collection
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Experiment Platform

• AMD A10-7850K APU: A real HSA hardware 

• It features four 3.7 GHz CPU cores and eight 720MHz GPU 
compute units

• Our system is equipped with 16 GB memory 

• We use AMD Heterogeneous System Architecture (HSA) -
Linux amdkfd v1.4 release

• We use CL Offline Compiler CLOC V0.9.5 (HSA 1.0F) with 
SNACK support
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Performance Evaluation

• Speedups from our framework

– Kernel-auto is the kernel from our SpMV framework by 
automatically selecting binning and parallelization strategies
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– Kernel-auto is the kernel from our SpMV framework by 
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– Compared to kernel-serial, we can achieve 1.7x to 11.9x speedups
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Performance Evaluation

• Speedups from our framework

– Kernel-auto is the kernel from our SpMV framework by 
automatically selecting binning and parallelization strategies

– Compared to kernel-serial, we can achieve 1.7x to 11.9x speedups

– Compared to kernel-vector, we can get 1.2x to 52.0x speedups
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Performance Evaluation

• Speedups from the prior state-of-the-art GPU SpMV “CSR-
Adaptive”*

– Our SpMV can yield better performance over 10 out of 16 sparse 
matrices and achieve up to 1.9x speedups 
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* J. Greathouse, M. Daga, “Efficient Sparse Matrix-vector Multiplication on GPUs Using the CSR Storage 
Format”, SC 2014



synergy.cs.vt.edu

Conclusion

• Proposed a SpMV framework using the machine learning 
model to automatically find the optimal parallel strategies
– Focusing on the CSR  format

– Choosing the appropriate grouping policy to organize 
independent rows (as “virtual” rows) into different bins

– Looking for the suitable kernels to process the bin rows

• Achieved significant performance improvements over the 
SpMV kernels using single kernel

• Achieved up to 1.9x speedups over other state-of-the-art 
SpMV kernels
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Discussion & Future Work

• Grouping all rows to a single bin
– Need more features of matrix to identify when to put all rows into 

a single bin 
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Discussion & Future Work

• Grouping all rows to a single bin
– Need more features of matrix to identify when to put all rows into 

a single bin 

• Extending our work to fully utilize both CPU and GPU
– High-volume bins on throughput-oriented processors

– Low-volume bins on latency-oriented processors
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