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Abstract—Wavefront loops are widely used in many scientific
applications, e.g., partial differential equation (PDE) solvers
and sequence alignment tools. However, due to the data
dependencies in wavefront loops, it is challenging to fully
utilize the abundant compute units of GPUs and to reuse data
through their memory hierarchy. Existing solutions can only
optimize for these factors to a limited extent. For example,
tiling-based methods optimize memory access but may result
in load imbalance; while compensation-based methods, which
change the original order of computation to expose more
parallelism and then compensate for it, suffer from both global
synchronization overhead and limited generality.

In this paper, we first prove under which circumstances
that breaking data dependencies and properly changing the
sequence of computation operators in our compensation-based
method does not affect the correctness of results. Based on
this analysis, we design a highly efficient compensation-based
parallelism on GPUs. Our method provides weighted scan-
based GPU kernels to optimize the computation and combines
with the tiling method to optimize memory access and syn-
chronization. The performance results on the NVIDIA K80
and P100 GPU platforms demonstrate that our method can
achieve significant improvements for four types of real-world
application kernels over the state-of-the-art research.

I. INTRODUCTION

Modern accelerators, e.g., GPUs, feature wide vector-
like compute units and a complex memory hierarchy. If
parallel applications can be organized to follow the SIMD
processing paradigm, coalesced memory access patterns, and
data reuse at different levels of the memory hierarchy, GPUs
can often deliver superior performance over CPUs. However,
wavefront loops, which can be found in many scientific
applications, including partial differential equation (PDE)
solvers and sequence alignment tools, are exceptions. Be-
cause their computations (including the association operator
and the distribution operator, discussed in Sec. II-A) update
each entry of a two-dimensional (2-D) matrix based on the
already-updated values from its upper, left, and (optional)
diagonal neighbors, this strong data dependency hinders the
optimizing of computation and memory access on GPUs
at the same time. That is, if data is stored in a row- or
column-major order, the data can be processed in parallel
but from non-contiguous memory addresses. In other words,
data dependencies prevent consecutively stored data to be
processed in parallel. Alternatively, if the data is stored in an
anti-diagonal-major order, parallel computation can naturally

follow the data dependency, but the exposed parallelism may
result in severe load imbalance and underutilization of the
compute units.

Fig. 1 provides an overview of existing approaches to
optimize waverfront loops on GPUs. In 1©, the parallelism
on anti-diagonal data is directly exposed by applying loop
transformation techniques, e.g., loop skewing and loop in-
terchange [1, 2]. These methods may lead to severe perfor-
mance penalties due to non-contiguous memory access and
load imbalance. In 2©, the tiling-based methods [3, 4, 5]
block the reusable data in local memories, e.g., caches, to re-
duce the overhead of uncoalesced memory access. However,
as their computation still strictly follows the anti-diagonal
order, the load imbalance occurs at the beginning and ending
anti-diagonals, causing the underutilization of computing
resources. Although the recent tiling-based method called
PeerWave [5] can mitigate the problem, it incurs extra
overhead to transform the data layout. In contrast, instead
of mainly optimizing memory accesses on GPUs, the recent
studies [6, 7] in 3© focus on accelerating computations and
resolving the load imbalance. The core idea is to ignore the
data dependency along a row at first, compute data entries in
a row in parallel, and finally correct the intermediate results.
We call this method as a compensation-based parallelism
for wavefront loops. However, this method requires expen-
sive global synchronizations within and between processing
each row, leading to frequent global synchronizations and
the loss of data reuse. More importantly, because this
method does not follow the original data dependency and
has changed the sequence of computation operators on data
entries, the domain knowledge from developers is required
for the correctness of the final results, which makes it a
privilege for experienced users only.
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Figure 1: Parallelization landscape for wavefront loops.

In this paper, we first investigate under which circum-
stances, the compensation-based method that breaks through
the data dependency and changes the sequence of computa-
tion operators properly can be used to optimize wavefront



loops. We prove that if the accumulation operator is associa-
tive and commutative and the distribution operator is either
distributive over or same with the accumulation operator,
changing the sequence of operators properly doesn’t affect
the correctness of results. We also analyze that several popu-
lar algorithms, including a successive over-relaxation (SOR)
solver [8], Smith-Waterman (SW) algorithm [9], summed-
area table (SAT) computation [10], and integral histogram
(IHist) algorithm [11], satisfy such requirements. Due to
its generality, we design a highly efficient compensation-
based solution for wavefront loops on GPUs: we propose a
weighted scan-based method to accelerate the computation
and combine it with the tiling method to optimize memory
access and reduce global synchronization overhead.

In the evaluation, we first compare the performance of
the weighted scan-based GPU kernels with those based on
widely-used libraries, i.e., Thrust [12] and ModernGPU [13],
and our kernels can deliver an average of 3.5x and 4.7x
speedups on NVIDIA K80 and P100 GPUs, respectively. We
also use our methods to optimize SOR, SW, SAT, and IHist
application kernels, yielding up to 22.1x (43.3x) speedups on
K80 (P100) over state-of-the-art optimizations [5]. Even for
their best scenarios, we can still obtain an average of 1.1x
(1.8x) improvements on K80 (P100). The key contributions
of this paper are summarized below.
1. We prove that in wavefront loops, if the accumulation

operator is associative and commutative and the distri-
bution operator is either distributive over or same with
the accumulation operator, breaking through the data
dependency and changing the sequence of computation
operators properly does not affect the correctness of
results. This provides the guidance for developers under
which circumstances, the compensation-based method
can be used. (In 3© and 4© of Fig. 1.)

2. We design a highly efficient compensation-based
method on GPUs. Our method provides the weighted
scan-based GPU kernels to optimize the computation,
and combines with the tiling method to optimize the
memory access and synchronization. (In 4© of Fig. 1.)

3. We carry out a comprehensive evaluation on both kernel
level and application level to demonstrate the efficiency
of our method over the state-of-the-art research for
wavefront loops.

II. BACKGROUND AND MOTIVATION

A. Wavefront Loops and Direct Parallelism

When loop-carried dependencies are present, compilers
are oftentimes hard to parallelize the loops effectively, even
with the auto-vectorization technologies and user-provided
directives [14]. Alg. 1 shows an example of the original
loop nests with such data dependencies. The corresponding
iterations and memory spaces are shown in Fig. 2a. This loop
can be parallelized for neither the i-loop nor j-loop, if we ad-

mit the row-major memory access pattern1. Fortunately, the
parallelism-inhibiting dependencies can be ‘eliminated’ by
applying loop transformation techniques, e.g., loop skewing
and loop interchange [2, 1]. The transformed loop is also
shown in Alg. 1. Thereafter, the potential parallelism can be
exposed from the iteration space in Fig. 2b. However, this
approach has two significant drawbacks: (a) load imbalance,
especially at the beginning and the ending iterations (shown
in the iteration space); (b) non-contiguous memory access
(shown in the memory space).

Algorithm 1 Original & transformed loop nests with wavefront parallelism.
1 // Original
2 for(int i = 0; i < m; i++)
3 for(int j = 0; j < n; j++)
4 A[i][j] = A[i][j-1] * 0.5 + A[i-1][j] * 0.5;
5 // Transformed via loop skewing and interchange
6 for(int I = 0; I < m+n-1; I++)
7 for(int J = max(0, I-n+1); J < min(m, I+1); J++)
8 A[J][I-J] = A[J][I-J-1] * 0.5 + A[J-1][I-J] * 0.5;
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Figure 2: Exposed parallelism and corresponding memory access pattern
of the two forms of loop nests in Alg. 1. In the iteration space, the arrow
represents the data dependency, e.g., a←b means iteration b depends on a.

Alg. 1 also shows there are two types of binary operators
in wavefront loops. The distribution operator will distribute
a part of the value of one entry to another. For example,
in this example, the multiplication “∗” is the distribution
operator, which distributes a portion of A[i][j-1] and
A[i-1][j] to A[i][j]. Another operator is the accu-
mulation operator, which will accumulate incoming values
into an entry. Here, the accumulation operator is “+”. Most
existing studies strictly follow the sequence of operators,
which means an entry will be updated by the accumulation
operator only after receiving the distributed values from all
prerequisites.

B. Tiling-based Solutions and Their Limitations

To reduce the cost of load imbalance and amortize the
overhead of non-contiguous memory access, many stud-
ies [5, 15, 3] apply the tiling-based methods, where the spa-
tial locality can be improved and the expensive synchroniza-
tion among each entry will convert to the synchronization
among tiles. However, there are two other issues.

Data layouts: In a basic design using the tiling optimiza-
tions, one can divide the working set into tiles and follow
the anti-diagonal direction to parallelize the computation.
The overhead of accessing non-contiguous data is mitigated
by the cache. However, the non-contiguous data access still

1By default, we assume the row-major layout for all arrays.



exists inside each tile, and at the beginning and the ending
of anti diagonals, there are no enough entries that can be
executed in parallel. This motivates the anti-diagonal major
storage and hyperplane on GPUs [4, 5]. However, there are
two another problems emerging:

(1) Wasted memory and computing resources. Suppose
the dimensions of the working matrix A are m by n and it
is divided into hyperplane tiles of h by w, shown in Fig. 3a.
To store the array A, we need to allocate

⌈
m
h

⌉
·
⌈
n+h−1

w

⌉
hyperplane tiles, where n+h−1 is to process n row entries
plus the longest preceding padding entries that is equal to
h−1. As a result, the actual memory usage for all hyperplane
tiles must be larger than m · (n + h). Therefore, in the
hyperplane mode, the percentage of effective memory usage
is approximately n/(n+h). Apparently, the padding overhead
is not negligible when n+ h is sufficiently larger than n.
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Figure 3: Splitting the array A into hyperplane tiles and their access patterns
w/ and w/o padding.

One might wonder that the padding could be removed
by adding rules to skip out-of-bound access. However, this
strategy will break the uniform access that is preferred by
GPUs. Fig. 3b demonstrates the diverged access in the
padding-free scenario. Compared to the uniform pattern,
each highlighted element needs to use different indexing
formulas to obtain their north neighbors, e.g., pos − 2 and
pos − 3 in the figure. Therefore, the padding-free strategy
may greatly increase the complexity of indexing and lead to
more branches in GPU kernels, resulting in the performance
degradation.

(2) Layout transformation overhead. To remove the non-
contiguous memory access, the data layout can be trans-
formed from the row-major to the anti-diagonal major [16,
5]. However, this conversion not only requires developers
refactoring the implementations, but causes significant trans-
formation overhead. In the evaluation, we have observed
the transformation time makes up to 31˜60% and 40˜72%
of computation time on on NVIDIA K80 and P100 GPUs,
respectively (Sec. VI-B2).

Task scheduling: The tile-based solutions, e.g., [3, 5, 17],
assigns a complete row of tiles to one compute unit, e.g.,
a Multiprocessor (MP) of GPU. In that way, the sequential
execution order by a MP naturally satisfies the dependency
between tiles on the same row; while the dependencies be-
tween tiles on different rows can be satisfied via lightweight
local synchronizations, e.g., the spin-lock, leading to a
pipeline-like execution mode. This methodology works very

well for square matrices (e.g., m ≈ n), because the load
balance among compute units can be quickly achieved by
the large amounts of parallel tiles along the anti-diagonal.
However, for rectangular matrices, especially when m� n,
such a methodology may lose the efficiency, since there are
no sufficient tiles in most anti-diagonals.

C. Compensation-based Solutions and Their Limitations

In recent years, several studies [7, 18, 6] have offered
another type of solutions for parallelizing wavefront loops.
Overall, the computation is conducted in a row-by-row
manner. The contiguous data entries in a row are divided
into groups and scheduled to different compute units. Fig. 4
shows three main steps on processing the bottom row: (1)
each compute unit ignores the horizontal data dependency
and computes its data entries in parallel to generate the
intermediate results; (2) a compensation step is performed to
compute ignored data for each entry in a scan-like process;
(3) each compute unit corrects the intermediate results with
the compensations for the final results. Each step of this
method can be parallelism-friendly, and also easy to balance
entries between compute units.

1: Ignore horiz. dep. 2: Compensate the partial results 3: Combine the results of 2 & 1

Figure 4: Compensation-based solutions decompose the processing into
three steps, each of which can be parallelism-friendly and load balanced.

However, this solution requires multiple expensive global
synchronizations within and between processing each row.
Within a row, in the step 2, after a compute unit finish its
local computation on the ignored data, it has to wait for the
finish of all preceding compute units to get their compensa-
tion results, because the data dependency is propagated from
the start to the end along a row. Between rows, only after
the third step finishes at all compute units, they can continue
processing the next row to avoid the data dependency be-
tween rows. Thus, the performance might deteriorate without
a highly optimized compensation design. More importantly,
previous research illustrates the compensation-based paral-
lelism works well for string matching operators, e.g., max
and +, but its generality to other domains is still unclear.
As a consequence, in this paper, we will determine the
boundary of the compensation-based method and answer the
question: under which circumstances, can the compensation-
based method be used to optimize wavefront loops?

III. COMPENSATION-BASED COMPUTATION – THEORY

A. Standard Wavefront Computation Pattern

We define our target wavefront computation pattern by
capturing the key operations and formalizing their data
dependencies.



Definition 1. (Wavefront Pattern) Let A = (Ai,j) be a m by
n matrix to store the output of the wavefront computation.
For any entry Ai,j , where 0 < i < m and 0 < j < n, the
relationships with its neighbors, e.g., Ai,j−1, are defined by
applying two generic binary operators � and ◦ as shown in
Eq. I. Besides, a constant or variable value b can be applied
on the operator ◦. Note, when i = 0 or j = 0, Ai,j can be
predefined according to application-specific rules.

Ai,j = (Ai,j−1 ◦ b0) � (Ai−1,j ◦ b1) � (Ai−1,j−1 ◦ b2) (I)

In the definition, ◦ is the distribution operator and � is
the accumulation operator, while we will use these symbolic
representations in the proof. This abstracted definition can
cover various real-world wavefront loops by transforming
the generic operators into concrete ones. The practical cases
will be discussed in Sec. IV.

B. Compensation-based Computation Pattern

We can present the compensation-based computation pat-
tern with the generic operators in Eq. I. First, the data
dependencies along the j-direction are ignored and the
partial results are represented as Ãi,j , leading to Eq. II-
1. Second, an additional compensation step of Eq. II-2 is
carried out to produce the compensation values Bi,j . Third,
the compensation values are used to correct the partial results
Ãi,j for the loss caused by the loosened dependencies, as
shown in Eq. II-3. The symbols

∏
and

∑
represent the

iterative binary operations ◦ and �, respectively.

Ãi,j = (Ai−1,j ◦ b1) � (Ai−1,j−1 ◦ b2) (II-1)

Bi,j =

{∑j−1
u=0(Ãi,u ◦

∏j−1
v=u b0) when ◦ 6= �∑j−1

u=0(Ãi,u � b0) when ◦ = �
(II-2)

Ai,j = Ãi,j �Bi,j (II-3)

Obviously, this new pattern has changed the computation
ordering in Eq. I. Thus, to show the validity, we need to
prove that under which circumstances, the Eq. II-3 (with
the Eq. II-1 and Eq. II-2) is equivalent to the Eq. I.

Theorem 1. The compensation-based computation shown in
Eq. II-3 (incl. Eq. II-1 and II-2) is equivalent with the origi-
nal computation in Eq. I, provided the binary operators � is
associative and commutative, and (1) ◦ has the distributive
property over �, or (2) ◦ is same with � (where, for brevity,
we only use �).

Proof: We use the induction method to prove the equivalence
of the two equations. First, we focus on a base case to
prove the statement holds for updating the first element
A1,1. Starting from Eq. II-3, we have A1,1 = Ã1,1 � B1,1.
According to Eq. II-2 and A1,0 is predefined, the item
B1,1 = Ã1,0 ◦ b0 = A1,0 ◦ b0, no matter ◦ is same with
� or not. Then, putting Eq. II-1 and Eq. II-2 into Eq. II-
3, we can get A1,1 = (A0,1 ◦ b1) � (A0,0 ◦ b2) � (A1,0 ◦ b0).
Since � has the commutative property, this is equal to

(A1,0 ◦ b0) � (A0,1 ◦ b1) � (A0,0 ◦ b2), which is A1,1 defined
by Eq. I. Thus the statement is true for the base case.

Then, we focus on the inductive step: if the statement
holds for j = k − 1, then it also holds for j = k.

In the case of ◦ 6= �, based on the Eq. II-2, we know
Bi,k =

∑k−1
u=0(Ãi,u ◦

∏k−1
v=u b0). We unfold

∑
to get:

Bi,k =
∑k−2

u=0(Ãi,u ◦
∏k−1

v=u b0) � (Ãi,k−1 ◦ b0) (1)

Since � has the commutative and associative properties, this
can be transformed to:

Bi,k = (Ãi,k−1 ◦ b0) � (
∑k−2

u=0(Ãi,u ◦
∏k−1

v=u b0)) (2)

Since ◦ has the distributive property over �, we can “factor
out” a b0 from each term and get:

Bi,k = (Ãi,k−1 � (
∑k−2

u=0(Ãi,u ◦
∏k−2

v=u b0))) ◦ b0 (3)

Using Eq. II-2 when j = k − 1, Eq. 3 can be simplified to:
Bi,k = (Ãi,k−1 �Bi,k−1) ◦ b0 (4)

Because the induction hypothesis that j = k − 1 holds,
meaning Ai,k−1 = Ãi,k−1 �Bi,k−1 is true, we can get:

Bi,k = Ai,k−1 ◦ b0 (5)

Then, putting Eq. II-1 and Eq. 5 to Eq. II-3, we get
Ai,k = (Ai−1,k ◦b1)� (Ai−1,k−1 ◦b2)� (Ai,k−1 ◦b0). Due to the
commutative property of �, this is equal to Eq. I. Therefore,
we demonstrate the statement also holds for j = k in the
case of ◦ 6= �.

Now, we consider the case of ◦ = �, where Bi,k =∑k−1
u=0(Ãi,u � b0). Then, due to the associative and commu-

tative property of �, Bi,k can be transformed to:
Bi,k = (Ãi,k−1 � (

∑k−2
u=0(Ãi,u � b0))) � b0 (6)

Eq. 6 can be simplified by using Eq. II-2 when j = k − 1.
Bi,k = (Ãi,k−1 �Bi,k−1) � b0 (7)

Using the induction hypothesis that j = k− 1 holds, we can
get Bi,k = Ai,k−1 ◦ b0. Then, similar to the case of ◦ 6= �, we
can prove Eq. II-3 is equal to Eq. I for the case of ◦ = � in
j = k.

Since both the base and inductive cases have been per-
formed, the statement holds for all natural numbers j.

Now, we compare the complexity of the proposed
compensation-based method with the original one. Obvi-
ously, the key difference of the two methods relies on how to
satisfy the dependencies along the j-direction. In the original
method, it is done by Ai,j−1◦b0 with O(1) complexity, while
in the proposed method, Eq. II-2 is used for the same pur-
pose, leading to O(n) complexity. Nevertheless, Eq. II-2 can
be also optimized to O(1) by using dynamic programming
techniques, i.e., Bi,j = (Bi,j−1 ◦ b0) � (Ãi,j−1 ◦ b0) for ◦ 6= �
or Bi,j = Bi,j−1 � (Ãi,j−1 ◦ b0) for ◦ = �. However, updating
Bi,j is still more expensive than the original Ai,j−1 ◦ b0
operation. We will show the proposed method can expose
more parallelisms in Sec. V, and thus it provides better
performance in Sec. VI.



IV. COMPENSATION-BASED COMPUTATION – PRACTICE

Here, we discuss representative wavefront loops and how
these loops can be expressed in the compensation-based
parallelism patterns from Sec. III.

SOR Solver (SOR) [8]: The successive over-relaxation
(SOR) conducts stencil-like computation to solve a linear
system of equations in an iterative fashion. As below,
A[i][j] represents a discrete gridpoint and its new value
depends on its neighbors: some are the most recently
updated (i.e., A[i][j-1], A[i-1][j]), while others are
from the previous time step (i.e., A[i][j], A[i+1][j],

A[i][j+1]), resulting in a wavefront computation pattern.
A[i][j] = (A[i][j] + A[i][j-1] + A[i-1][j] +

A[i+1][j] + A[i][j+1]) / 5;

To express the computation in the compensation-based par-
allelism pattern in Sec. III, we map (�, ◦) to (+, ·) and b0,
b1, b2 to 0.2. Obviously, the operator + and · satisfy the
requirements of the Thm. 1.

Smith-Waterman (SW) [9]: It is a well-known algorithm
to align the input sequences a and b. A[i][j] stores the
maximum score for aligning the sub-sequences 0-i of a and
0-j of b. The s(i,j) is the substitution function (i.e., b2) to
check if the corresponding amino acids are same at i of a

and j of b. The constant 2 is the insertion/deletion penalty
(i.e., b0 and b1). For the operators, we map (�, ◦) to (max,+).
Note, max is a binary operator, but for brevity, we put four
operands in this form.
A[i][j] = max(A[i][j-1] - 2, A[i-1][j] - 2,

A[i-1][j-1] + s(i,j), 0);

Summed-area Table (SAT) [10]: It is used to accelerate
texture filtering in image processing, where A[i][j] stores
the sum of all pixels above and to the left of the point (i,j).
Thus, p[i][j] is the pixel value (i.e., b2). In addition, the
operator ◦ is equal to � and is +; b0 and b1 are both 0.
Note that, the computation order in the compensation-based
method discussed in the previous section is along the j-
direction. In this case, all entries at the row i− 1 have been
updated when processing the row i. As a result, the negation
on A[i-1][j-1] will not affect the correctness.
A[i][j] = p[i][j] + A[i][j-1] + A[i-1][j] - A[i-1][j-1];

Integral Histogram (IHist) [11]: It extends the SAT and en-
ables the multi-scale histogram-based search. In this method,
A[i][j] is the histogram position for a bin z of its top-
left sub-image, and thus, Q(i,j,z) checks if the pixel (i,j)
belongs to bin z or not (i.e., b2). The other parts are similar
with SAT: ◦ is equal to � and is +; b0 and b1 are both 0.
A[i][j] = A[i][j-1] + A[i-1][j] - A[i-1][j-1] + Q(i,j,z);

V. DESIGN AND IMPLEMENTATION ON GPUS

This section presents our efficient design of the
compensation-based parallelism on GPUs. Because Eq. II-
1 and Eq. II-3 naturally present no dependencies between

neighboring entries and are easy to parallelize, we focus on
Eq. II-2, the compensation step.

A. Compensation-based Computation on GPUs

For the compensation step, based on Eq. II-2, we can
transform the computation to a fixed number of operations,
i.e., Bi,j = (Bi,j−1 ◦ b0) � (Ãi,j−1 ◦ b0) for the case of ◦ 6= �,
andBi,j = Bi,j−1 � (Ãi,j−1 ◦ b0) for the case of ◦ = �. This
method is used by previous research [7]. However, it will
make every cell in B to depend on all preceding entries,
causing strong data dependencies. Besides, the two formulas
indicate different strategies to cope with parallelization,
setting obstacles for the implementations on GPUs.

Therefore, we propose the efficient scan- and weighted
scan-based methods to process the compensation computa-
tion. For the case of ◦ = �, because all previous Ã contribute
equally to current B, they only need to add a single b0 on the
operator (◦). For example, to calculate B1,3, Ã1,0◦b0, Ã1,1◦b0,
and Ã1,2 ◦ b0 are used and each of them only needs to add
a single b0 on the operator without the consideration of the
index. This actually corresponds to a typical scan operation,
which has be well understood on GPUs [19]. However, the
case ◦ 6= � is much complicated, because each previous Ã

has different impacts on current B. For example, to calculate
B1,3, Ã1,0 ◦ 3b0, Ã1,1 ◦ 2b0, and Ã1,2 ◦ b0 are applied2. Thus,
the index (or distance) information of each operand has to
be considered. We call this as the weighted scan pattern
and its parallel design is shown in Fig. 5.
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Figure 5: Parallel design of the weighted scan-based compensation com-
putation. The operands lhs and rhs represent the left-hand side and the
right-hand side of the � operator.

In the design, we conduct the compensation computation
in two stages. (1) the weighted scan. This is an iterative com-
putation to consider the effects of each preceding operand
lhs on the current operand rhs. Suppose the size of the
input array Ã is n, we need log2n steps (from log2n − 1 to
0) to finish the weighted scan. In each step, an entry lhs

will contribute the weight (2i)b0 to the entry rhs with the
distance (2i). For example, as shown in the figure, when the
input array is 4, there are 2 steps in the weighted scan. In
the step i = 1, the lhs operand Ã0 contributes (21)b0 to the
rhs operand Ã2, leading to (Ã0 ◦ (21)b0)� Ã2 on the position
of Ã2. Note, if the position of rhs is less than the current

2In the following sections, for brevity, the coefficient before b0 means
the number of ◦ operations on b0, e.g., 2b0 equals to

∏2
k=1 b0.



distance 2i, the lhs doesn’t need to contribute anything to
rhs. (2) the weighted shift. According to Eq. II-2, Bi,j stores
only the summation of previous weighted Ãi,u with u up
to j − 1. Thus we need to compensate the previous results
from the weighted scan to eliminate the effects of current
operand. This can be achieved by shifting each item and add
an additional weight b0, as shown in the right part of Fig. 5.

In order to better fit the underlying architecture of GPU,
our implementation carries out the warp-aware SIMD com-
putation by explicitly operating data at the register level [20,
21]. Alg. 2 shows our weighted scan GPU kernel for
the operator (+, ·). The function blk_wscan in line(L) 2
processes data assigned to each block. First, we load current
data to rhs (L8-9), followed by a series of warp-level shuffle
operations to realize the inner-warp weighted scan (L11-
15) using the scaling weight w with the distance i (L13).
The intermediate results are stored on shared memory. Then,
a single thread will handle the inter-warp weighted scan
over the intermediate results, where the weight grows by
the distance of a WRP_SIZE (L18-26). Finally, we broadcast
the values on shared memory (representing the effects from
preceding warps) to the local value in current warp; still,
the weight should be scaled up with the local index (L29).
Note, in L31, f determines if an additional weight w is
needed for modifying the current value (corresponding to
the aforementioned weighted shift).

The function cpst_based_comput in L34 is a recursive
function to deal with the data exceeding a block size and the
basic case is identified in L39. The function blk_wreduce

is a variant of blk_wscan to perform weighted reduction
operations over the data for each block, whose intermediate
results are stored in part_d. Then, we recursively call the
weighted scan to process part_d using the weight with the
distance of BLK_SIZE (L45). At last, blk_wscan is used to
carry out the inner-block weighted prefix sum (L47).

Algorithm 2 Weighted prefix sum for the operator (+, ·)
1 __global__ // BLK_SIZE: block size; WRP_SIZE: warp size
2 void blk_wscan(float *in, float *out, int n,
3 float w, float *partial, bool f) {
4 __shared__ float smem[BLK_SIZE/WRP_SIZE];
5 // gid: global idx; tid: thread idx; bid: block idx;
6 // lid: lane idx; wid: warp idx;
7 float rhs, lhs;
8 if(tid == 0) rhs = partial[bid];
9 else rhs = (gid<n)?in[gid-1]:0;

10 /* Inner-warp weighted prefix-sum */
11 for(int i = (WRP_SIZE>>1); i >= 1; i >>= 1) {
12 lhs = __shfl_up(rhs, i);
13 if(lid >= i) rhs = lhs*__powf(w, i) + rhs;
14 }
15 if(lid == WRP_SIZE-1) smem[wid] = rhs;
16 /* Inter-warp weighted prefix-sum */
17 __syncthreads();
18 if(tid == 0) {
19 float lhs2 = smem[0]*w, rhs2;
20 smem[0] = partial[0];
21 for(int i=1; i<BLK_SIZE/WRP_SIZE; i++) {
22 rhs2 = smem[i];
23 smem[i] = lhs2;
24 lhs2 = lhs2*__powf(w,WRP_SIZE)+rhs2*w;
25 }}

26 __syncthreads();
27 /* Inner-warp broadcast */
28 rhs = rhs +
29 ((!lid)?smem[wid]:smem[wid]*__powf(w, lid));
30 /* Modification */
31 if(f) if(tid != 0) rhs *= w;
32 if(gid < n) out[gid] = rhs;
33 }
34 void cpst_based_comput(float *in, float *out, int n,
35 float base, float w, bool f=true) {
36 dim3 blks(BLK_SIZE, 1, 1);
37 dim3 grds(CEIL_DIV(n, BLK_SIZE), 1, 1);
38 // Device malloc part_d for partial results
39 if(dimGrid.x == 1) {
40 // D2H: copy base to part_d
41 blk_wscan<<<grds, blks>>>(in, out, n, w, part_d, f);
42 return;
43 }
44 blk_wreduce<<<grds, blks>>>(in, out, n, w, part_d, f);
45 cpst_based_comput(part_d, part_d, grds.x,
46 base, pow(w,BLK_SIZE), false);
47 blk_wscan<<<grds, blks>>>(in, out, n, w, part_d, f);
48 }

One can also implement the weighted scan-based com-
pensation method on GPUs by leveraging the scan func-
tions from GPU library, e.g., Thrust and ModernGPU. The
appendix shows how to prepare corresponding customized
comparators for the library-based scan functions, which will
be used as one of the baselines in the evaluation.

B. Synchronizations on GPUs: Global vs. P2P

As discussed in Sec. II-C, the compensation-based method
may encounter the performance degradation due to the syn-
chronizations within and between rows. The weighted scan
method can mostly mitigate the synchronization overhead
within a row; while between rows, the synchronization still
affects the performance, because existing compensation-
based solutions [6, 7] schedule thread blocks in a row-by-
row manner, and each thread block have to wait for the
finish of all others before processing the next row. We call
this scheduling method as the global synchronization. On
the contrary, the tile-based solutions [5, 3] use a pipeline-
like mode: the tiles in a same row will be assigned to a thread
block and be processed sequentially, which guarantees the
horizontal dependencies; when the computations on a tile
finish, it will trigger the processing on tiles below through
a lightweight peer-to-peer (P2P) synchronization, e.g., spin
locks, which guarantees the vertical dependencies.

Fig. 6 exhibits these two methods to solve Alg. 1 over
different working matrices by varying their dimensions of
m and n. When m and n are close to each other, sufficient
tile-level parallelism can be exposed, since there are many
parallel tiles along the anti-diagonal. Thus, in the tile-based
method, the poor performance of sequential processing at
the beginning and the ending diagonals can be effectively
hidden. In this scenario, i.e., m and n are close, processing
the matrix row by row would cause high overhead due to the
frequent global synchronizations. This is shown in the right
part of Fig. 6. On the other hand, when m is much larger
than n, the portion of the beginning and ending diagonals
is not negligible in the anti-diagonal-major method; in the



extreme case, the whole computation would be serialized.
For example, each row/anti-diagonal only contains a single
tile, and thus, no tiles can be processed in parallel. In this
scenario, as shown in the left part of Fig. 6, the row-major
method with the global synchronization can provide much
better performance.
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Figure 6: Performance comparison between the row-major computation
with global sync. and the anti-diagonal-major computation with peer-to-
peer (p2p) sync. The row-major kernel is based on our weight scan based
method, while the diagonal-major kernel is based on a tiled solution [5].

C. Putting Them All Together

As discussed in the previous subsection, there is no
single scheduling and synchronization method that can fit
in different scenarios of workloads. Therefore, we propose
a two-level hybrid method for wavefront problems, as shown
in Fig. 7. We use the compensation-based computation for
the matrices which can expose sufficient parallelism for each
row and the row number is limited to reduce the overhead
of the global synchronization; otherwise, we switch to a
tile and compensation hybrid method that organizes data
into tiles and utilize p2p synchronization between tiles,
while inside each tile, still uses the compensation-based
method to accelerate the computation. To find the optimal
switching points, we build a simple offline auto-tuner based
on the logistic regression to learn how the software and
hardware configuration factors, including the operational
intensity on each entry, the m and n of working matrix,
and the generation of GPUs, determine the switch point.
In the evaluation, we take 200 combinations of factors to
determine the likelihood function offline.
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Figure 7: Proposed hybrid method to adapt the computation and synchro-
nization to different wavefront problems and workspace matrices.

VI. EVALUATION

We conduct the experiments on two generations of
NVIDIA GPUs, i.e., Tesla K80 and P100. The specifications
are listed in Tab. I. First, we evaluate the performance of
the core kernel in the compensation-based solution. Then,

we investigate how the tile sizes affect the performance of
our hybrid method. Finally, we report on the performance
of the wavefront problems solved by our method compared
with state-of-the-art optimizations.

Table I: Experiment Testbeds

Tesla K80-Kepler Tesla P100-Pascal
Cores 2496 @ 824 MHz 3584 @ 405 MHz
Multiprocessors (MP) 13 56
Reg/Smem per MP 256/48 KB 256/48 KB
Global memory 12 GB @ 240 GB/s 12 GB @ 720 GB/s
Software CUDA 7.5 CUDA 8.0

A. Performance of Compensation-based Kernels

We first study the weighted scan performance in the
compensation-based solution by comparing the performance
of our own design in Alg. 2 with the scan functions based
on Thrust and ModernGPU. The customized comparators
for the library-based solutions are shown in appendix. As
indicated by the four wavefront problems in Sec. IV, we
only need three combinations of binary operators, i.e., (+, ·),
(max,+), and (+,+). The input matrices contain random
sizes of m and n varying from 214 to 228.
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Figure 8: Throughput comparison of the weighted scan kernels.

As shown in Fig. 8, for the case of ◦ 6= �, i.e., (+, ·),
(max,+), our design can yield significant performance im-
provements over Thrust and ModernGPU, achieving an aver-
age of 3.5x (4.7x) and 2.4x (3.9x) speedups on K80 (P100).
The implementation of ModernGPU explicitly exploits GPU
register for data reuse and permutation3. However, our
implementations not only take advantage of GPU registers,
but also optimize the performance due to the following
two reasons: (1) we calculate the distance-related weights
more efficiently within the kernels; while the library-based
methods put all the checking and calculating in the compara-
tors, leading to redundant computations; (2) our algorithm
directly operates on the original data and keep track of their

3Since ModernGPU is an open source library, our analysis for library-
based solutions is mainly based on it.



location in GPU kernels; while the library-based design has
to pack and unpack such information before and after the
actual computation, causing extra performance penalty.

For the case of ◦ = �, i.e., (+,+), where there is no
need to deal with the varied weights, our solution falls back
to a typical scan algorithm and can achieve comparable
performance to the highly-optimized library codes. We also
observe that our design is particularly effective for the
middle range of input sizes. For example, it can deliver
an average 5.5x improvements for the inputs ranging from
216 to 222 on P100. This is due to the different parallel
strategies. In ModernGPU, each thread is “coarsened” to
handle multiple data elements to better utilize the on-chip
memory. However, this might result in the degraded GPU
occupancy that less threads can be running in a multiproces-
sors (MP) to hide memory latency for middle-sized inputs.
As a contrast, considering the potential heavy use of registers
for the weight computation, we schedule a thread to process
one element at one time. Besides, this thread-data scheduling
strategy can also avoid uncoalesced memory transaction.

B. Performance of Hybrid Kernels

1) Optimal Tile Sizes: Our hybrid method conducts
compensation-based computation in tiles when sufficient
parallelism is available on anti-diagonals. Thus we first
investigate how the tile sizes influence the performance. In
the experiment, a large square matrix of 215x215 is used to
represent the case with sufficient anti-diagonal parallelism.
In addition, we maximize the shared memory usage (40 KB
for each block and other 8 KB for the inter-warp weighted
prefix-sum), by using the persistent thread block mecha-
nism [5, 17], where each MP only hosts one thread block to
avoid deadlock for the spin-lock in the p2p synchronization.
The tile sizes (height * width) are shown in Fig. 9. The width
corresponds to the thread block size, meaning threads will
perform the row-major compensation-based computation. In
Fig. 9, we observe that our hybrid method prefers rectangular
tiles, because they allow more threads to handle entries in
parallel and the resources of registers and shared memory
for intermediate values can be more efficiently utilized. For
the SOR and SW, the complex weight computation needs
more thread warps per block to exploit the high parallelism
and data reuse in registers. In contrast, for the SAT and
IHist, the computation is relatively simple and small blocks
are sufficient. In the following experiments, we set tile
sizes to 10x1024 for SOR and SW on K80 and P100, and
20x512 (40x256) for SAT and IHist on K80 (P100). For the
other tiling-based solutions, i.e., tile and hypertile method in
Sec. VI-B2, similar tuning procedures are performed, and we
select the best tile sizes for them (i.e., the tiles 80x128 or
40x256).

2) Comparison to Previous Work: Now, we evaluate the
wavefront problems optimized by our method and state-of-
the-art solutions. We fix the total size of the working matrix
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Figure 9: Performance of our hybrid method with varying tile sizes (height
* width)

A to 230 with varying dimensions as shown in Fig. 10.
The dashed vertical lines mark the switching points in our
hybrid method to use the global and p2p synchronization,
whose calculation is based on the auto-tuner presented in
Sec. V-C. For the tiling-based methods, the tile kernel uses
the original row-major data layout, while the hypertile uses
the hyperplane tiles with the anti-diagonal major layout via
the affine transformation. Most of the codes can be found
in previous research [5]. For the library-based strategy, lib-
mgpu and lib-thrust are the compensation-based solution
with the global synchronization using ModernGPU and
Thrust libraries, respectively.

We first focus on the left parts of the vertical dashed
lines, where our hybrid methods use the weighted scan
with the global synchronization. For SOR and SW, the
library-based solutions can achieve an average of 3.7x (4.3x)
speedups over tiling-based ones on K80 (P100), because a
matrix (height * width) with the longer width can expose
more parallelism in a row and at the same time the shorter
height places less demands on global synchronization. These
scenarios will cause severe serialization of tiling-based so-
lutions, which explains the drastic improvements from our
solution of up to 22.1x (43.3x) speedups on K80 (P100).
Compared to the library-based solutions, our design can
provide an average of 1.9x and 3.1x speedups on K80 and
P100, respectively. This can mainly attribute to our native
support to the complex weight computation and elimination
of pack and unpack overhead, as discussed in Sec. VI-A.
For SAT and IHist, our design can deliver the significant
speedups: up to 4.8x (6.5x) speedup over the library-based
solutions on K80 (P100) when the width of the input matrix
falls into the range of 216 to 222, which is consistent with
the results in Sec. VI-A.

Then, we focus on the right parts of the dashed lines,
where our hybrid methods switch to the p2p synchronization.
In these cases, the performance of library-based solution
deteriorates significantly, as more expensive global syn-
chronizations are required. As a contrast, the tiling-based
solutions exhibit superior performance as the square-like
matrices contain more parallel tiles along anti-diagonals.
Compared to the tile kernel, our solution takes advantage
of both row-major computation and lightweight local syn-
chronization, achieving an average of 3.6x (3.1x) speedups
on K80 (P100). For the hypertile kernel, its computation is
improved significantly for the square-like matrices due to
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Figure 10: Performance comparison of the library-based (lib-thrust, lib-mgpu), tiling-based (tile, hypertile) and our hybrid method on different input matrices
(height * width). The transformation of data layouts in hypertile is also presented. The vertical dashed lines indicate the switch points in our method.

the increased number of entries in each tile that exposes
more parallelism opportunities; however, the transformation
overhead becomes non-negligible. Our method, by contrast,
is able to provide an average of 1.1x speedup on K80 if
the transformation overhead is considered, and on P100 we
can achieve to an average of 1.8x speedup. Even if we only
consider the computation part, our method can still yield an
average of 1.3x speedups on P100.

C. Discussion
Precision: For the integer datatype, our compensation-

based method can obtain exactly same results with the
original methods, e.g., tiling-based ones. However, we also
need to consider the precision for float and double datatypes,
because changing the computation order may lead to differ-
ent rounding results. In SOR experiments, we observe the
small relative errors are around 10−6 if the float datatype is
used. The error can be further reduced to 10−8 for double
datatype. We believe this is acceptable to the applications
using float and double datatypes.

Generality: Thm. 1 poses the requirements on the oper-
ators ◦ and � along the horizontal dimension; however, in
practice, the requirements can be loosened or differentiated
along the vertical and diagonal dependencies (e.g., the
negation in SAT from Sec. IV). On the other hand, the proof
demonstrates this compensation-based method only relies on
standard properties of binary operators. Therefore, it could
benefit applications in a more general data dependency (e.g.,
FSM [22]) than the wavefront pattern that only has the
dependencies with the horizontal, vertical, and anti-diagonal
neighbors.

VII. RELATED WORK

Many efforts have been devoted to the study of wavefront
problems for parallelization. One direction is to exploit loop

transformation techniques to expose the potential parallelism
hidden in target loop nests. These solutions are usually
embedded into compilers for automatic parallelism detection
and code generation. Wolfe [2] studies the loop skewing
techniques to explore the parallelism in such loop nests.
Another more general solution to extract the parallelism
is to rely on the polyhedral model, which synthesizes
affine transformations to adjust the iteration space. Di et
al. [4] devise a compiler framework using the polyhedral
model to maximize intra-tile parallelism for loop nests
with dependencies. Baskaran et al. [1] present an code
transformation system based on polyhedral optimization to
generate efficient GPU codes. Other efforts on this model to
explore parallelism from loop nests include [23].

Another direction concerns how to map the exposed
parallelism efficiently on parallel machines. Xiao et al. [17]
propose an atomic-based local synchronization to handle de-
pendencies among tiles. PeerWave [5] is a GPU solution for
efficient local synchronization between tiles. For the tiling,
it utilizes square tiles and hypertiles respectively. Manjikian
and Abdelrahman [3] explore the intratile and intertile
locality for the large-scale shared-memory multiprocessors.
The synchronization problems are also identified in [24, 25].
All the approaches above perform the computation strictly
following the original dependency order, which might cause
issues on access, locality, and load balance. Differed from
them, we focus on using a different computational order for
more parallelism (from the problems) and more efficiency
(from underlying GPUs).

For domain-specific problems with wavefront patterns,
some parallel approaches on computation refactoring are
proposed. Farrar [6] and Khajeh-Saeed et al. [7] propose
methods in sequence alignment to first ignore the depen-
dencies in one direction and then compensate the inter-



mediate results via additional corrections. In practice, the
amount of corrections may depend on the characteristics of
input sequences [18]. These work, however, requires expert
knowledge on the parallel instructions, which are convoluted
and idiosyncratic [26, 27, 28], and only ensures feasibility
and efficiency for limited operations (e.g., max). Our work,
by contrast, addresses a general wavefront problem by
outlining its validity and limitation on different combinations
of operators using a mathematical proof.

VIII. CONCLUSION

In this paper, we target on the compensation-based paral-
lelism for wavefront loops on GPUs. We prove that for the
compensation-based method, if the accumulation operator is
associative and commutative, and the distribution operator
is either distributive over or same with the accumulation
operator, breaking through the data dependency and chang-
ing the sequence of computation operators properly will not
affect the correctness of results. We also propose a highly
efficient design of the compensation-based parallelism on
GPUs. Experiments demonstrate that our work can achieve
significant performance improvements for four wavefront
problems on various input workloads.
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APPENDIX
LIBRARY-BASED IMPLEMENTATIONS

It is invalid to use ‘address-of’ operator (&) for index-
ing on GPUs, since the data are controlled explicitly in
memory hierarchies with different address spaces. Moreover,
restricted by the interface of comparators, we can only define
the behavior of two given operands rather than the scan
itself. Based on these, we implement the custom comparator
in Alg. 3. A new data structure concat_t is introduced to
associate the original value v, its index i, and the flag f

to mark if its distance needs modification (weighted shift).
Then, the comparator is shown from line(L) 6: k is the
distance between the two operands to add weights on lhsv

in L11 or 14. f makes sure the weight is modified if
the weighted shift occurs (e.g., L11). The branch in L10
guarantees the lhsv is always preceding rhsv.

Algorithm 3 Custom comparator in library-based solution for Alg. 1, where
the operator combination is (+, ·) and the weight is 0.5.

1 typedef struct {
2 float v; int i; bool f = false;
3 } concat_t;
4 template<typename T=concat_t> struct bin_opt {
5 __device__
6 T operator()(const T &lhs, const T &rhs) const {
7 int k = abs(rhs.i - lhs.i);
8 float lhsv, rhsv;
9 int idx = max(lhs.i, rhs.i);

10 if(lhs.i < rhs.i) {
11 lhsv = lhs.v * __powf(0.5, lhs.f?k:k+1);
12 rhsv = rhs.v * (rhs.f?1:0.5);
13 } else {
14 lhsv = rhs.v * __powf(0.5, rhs.f?k:k+1);
15 rhsv = lhs.v * (lhs.f?1:0.5);
16 }
17 T res(lhsv+rhsv, index, true);
18 return res;
19 }};


