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ABSTRACT

Spatial blocking is a critical memory-access optimization to effi-

ciently exploit the computing resources of parallel processors, such

as many-core GPUs. By reusing cache-loaded data over multiple

spatial iterations, spatial blocking can significantly lessen the pres-

sure of accessing slow global memory. Stencil computations, for ex-

ample, can exploit such data reuse via spatial blocking through the

memory hierarchy of the GPU to improve performance. However,

approaches to take advantage of such blocking require complex

and tedious changes to the GPU kernels for different stencils, GPU

architectures, and multi-level cached systems.

In this work, we explore the challenges of different spatial block-

ing strategies over three cache levels of the GPU (i.e., L1 cache,

scratchpad memory, and registers) and propose a framework GPU-

UniCache to automatically generate codes to access buffered data

in the cached systems of GPUs. Based on the characteristics of

spatial blocking over various stencil kernels, we generalize the

patterns of data communication, index conversion, and synchro-

nization (with abstracted ISA-friendly interfaces) and map them to

different architectures with highly optimized code variants. Our

approach greatly simplifies the design of efficient and portable sten-

cil computations across GPUs. Compared to stencil kernels based

on hardware-managed memory (L1 cache) and other state-of-the-

art GPU benchmarks, the GPU-UniCache can achieve significant

improvements.
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1 INTRODUCTION

Spatial blocking is a critical memory-access optimization that seeks

to put spatially reusable data in fast memory (e.g., L1 cache, scratch-

pad memory, or registers) before actual computation. It has been

proven to be effective in utilizing the parallel computing potential

of modern accelerators, especially for stencil kernels, where the

kernels perform the same computations and data-access patterns

over each cell in a multi-dimensional grid. Extensive research ef-

forts have been taken to explore different blocking schemes and

develop high-performance stencil programs [7, 26, 30, 31].

In stencil computations, each cell is visited multiple times by

its neighbors with the computation sweeping over a spatial grid.

Consequently, cache blocking should be done to avoid unnecessary

off-chip DRAM loads. Besides global memory, modern GPUs come

with multiple low-latency cache levels within each compute unit

(CU): (1) L1 cache: hardware-managed cache; (2) scratchpadmemory:

fast, programmable memory that is shared by threads assigned to

the same CU, but which developers must explicitly manage; and (3)

registers: fastest memory that can be accessed by each thread. In

addition, recent GPUs support data exchange between threads in

the same wavefront [1] or warp [27].

Different spatial blocking techniques have been proposed for

these caches. By using scratchpad memory, one can explicitly load

the requisite stencil data into cache from global memory. Then, all

the working threads synchronize before doing the actual computa-

tion. After the computation, the results are stored back to global

memory [26]. With the regularity of access pattern in stencils

(based on Cartesian grids), simply relying on the L1 cache can also

provide competitive performance [14, 23, 35]. That way, developers

only need to focus on the workload partitioning and thread orga-

nization. In addition, the advent of register-based data exchange

between threads enables each thread to load data into its individual

registers and then directly communicate with the threads who own

its neighboring data [2, 7, 11].

However, optimizing stencil kernels via spatial blocking intro-

duces three major challenges. First, writing blocking code requires

substantial coding effort – especially when using registers, as devel-

opers must handle the complex and convoluted data communication

patterns amongst threads. For stencils with different dimension-

alities, where communication patterns must change accordingly,

developers must possess extensive coding expertise to reorganize

the threads and recalculate the data exchange patterns. Second,

different GPU architectures have different ISAs, specifications, and

run-time configurations – all of which impact the communication

patterns, and in turn, lead to rewriting of the stencil codes. For

example, the sizes of hardware scheduling unit (e.g., wavefront)

and data exchange instructions differ between AMD and NVIDIA
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GPUs, causing issues with code portability for the stencil kernels.

Third, even when a selected stencil is mapped onto a selected GPU,

the redesign of the kernel still requires changes in the target cache

levels (e.g., scratchpad memory or registers) or blocking strategies

(e.g., 2D, 2.5D, or 3D blocking schemes).

While existing stencil frameworks for parallel code generation

and performance auto-tuning focus on mapping an entire stencil

computation onto an accelerator with dedicated blocking optimiza-

tions [24, 34], we focus on a cross-platform framework called GPU-

UniCache that automatically generates spatial blocking codes for

different stencils, GPU architectures, and cache levels, while still

allowing developers the option to change their desired stencils.

That is, GPU-UniCache analyzes the characteristic parameters of

both stencils and GPUs as input and generates highly-optimized

blocking codes for the designated cache level. For example, for

register-based methods, the GPU-UniCache framework handles

the distribution of grid data to minimize register conflict and re-

alizes the communication patterns of given blocking strategies by

minimizing the number of permute/shuffle instructions.

The contributions of our work include the following: (1) GPU-

UniCache, a framework to automatically generate spatial blocking

codes for stencil kernels on GPUs, and (2) a comprehensive evalua-

tion of the GPU-UniCache framework on AMD and NVIDIA GPUs.

GPU-UniCache not only improves programming productivity by

unifying the interfaces of spatial blocking for different stencils, GPU

architectures, and cache levels; but it also provides high perfor-

mance by optimizing data distribution, indexing conversion, thread

communication, and synchronization to facilitate data access in

GPU kernels. Compared to hardware-managed memory (L1 cache),

with single-precision arithmetic, our automatically-generated codes

deliver up to 1.7-fold and 1.8-fold speedups at the scratchpad mem-

ory level and register level, respectively, when running on an AMD

GCN3 GPU and up to 1.6-fold and 1.8-fold, respectively, when run-

ning on a NVIDIA Maxwell GPU. For double precision, it delivers

up to a 1.3-fold speedup on both GPU platforms. Compared to

the state-of-the-art benchmarks (incl. Parboil [32], PolyBench [29],

SHOC [5]), it can also provide up to 1.5-fold improvement.

2 BACKGROUND AND MOTIVATION

2.1 Stencil Computation

A stencil computation defines the point p in a multi-dimensional

grid at time t (stored in v) that is updated based on a function f of

surrounding grid points P at the previous time step t − 1 (stored in

u). It sweeps the stencil computation over all the points at t before
moving to the next time step t + 1 and then the next. The stencil

order h defines the distance between the central point p and its

farthest neighbor q ∈ P. The stencil size N is |p⋃P|. Eq. (1) shows
a stencil computation pattern in a 2-dimensional (i.e., 2D) grid; its

h is 1; and N is 5. For brevity, we refer to this stencil as “2D5Pt.”

vi, j = f (P) = a0ui−1, j + a1ui+1, j + a2ui, j + a3ui, j−1 + a4ui, j+1 (1)

Due to the application-specific f, there exists no common libraries

for stencils that users can directly use without defining the spe-

cific stencil patterns. Thus, to evaluate the potential benefits of

our GPU-UniCache library framework, we collect a benchmark of

stencils representing different dimensionalities and memory-access

patterns, as noted in Table 1. Although we distinguish between low

and high data-reuse kernels for each dimensionality, their arith-

metic intensities (AI), defined as FLOPS/byte [39], are similar.1 Ad-

ditionally, data-access patterns differ in that one-dimensional (i.e.,

1D) stencils make unit-stride access, whereas higher-dimensional

stencils make non-contiguous access of memory. Irrespective of

the access pattern, if the data can be ideally cached and reused, the

stencil computation will benefit with respect to performance.

Table 1: Summary of the stencil computations

Name jacobi-
1d [29]

gaussian
X7 [41]

jacobi-
2d [29]

seidel-
2d [29]

heat-
3d [29]

jacobi-
3d [6]

Stencil 1D3Pt 1D7Pt 2D5Pt 2D9Pt 3D7Pt 3D27Pt
h 1 3 1 1 1 1
N 3 7 5 9 7 27

#FLOPS 5 13 9 17 13 53
Bytes 12 28 20 36 28 108
AI 0.42 0.46 0.45 0.47 0.46 0.49

2.2 Spatial Blocking Schemes

In spatial cache-blocking optimizations, one needs to load data into

the cache, and then do the stencil computation using the cached

data before the results are stored back to global memory. Fig. 1

shows examples of different blocking schemes. A 2D stencil can be

optimized by using 2D tiles. Likewise, for 3D stencils, a 3D block is

a natural way to buffer data for high reuse. Alternatively, one can

use a 2D-slice layout, allowing stencil computations to be carried

out from the bottom to the top (i.e., 2.5D blocking). In addition,

temporal blocking [26], consisting of multiple rounds of spatial

blocking within the cache, can also be used.

2D blocking 2.5D blocking 3D blocking
sq tile rect tile

3D stencil problem2D stencil problem

x
y z

x
y z

x
y

x
y

B B B B B
B C C C B
B C C C B
B C C C B
B B B B B

Figure 1: Blocking schemes for 2D and 3D stencils

Fig. 1 shows which data domains are loaded into the cache. How-

ever, when designing real GPU kernels, one must explore imple-

mentation details, such as how to load domain data. As shown

in the figure, when loading a 2D-square tile, the task of loading

boundary points (Bs) outside the current tile is assigned to point

Bs rather than Cs. This method introduces branch divergence to

the GPU kernels. Alternatively, with an (additional) amount of

remapping calculation, the data can be evenly assigned to threads

(not shown in the figure). In addition, when loading data, one must

decide on either a square tile for high data reuse or a rectangle

tile for more regular memory access. All the above choices will

affect the later realization of fetching data from caches, which in

turn, produces significant performance differences (as captured in

Fig. 3b).

On the other hand, the temporal cache-blocking essentially adds

another dimension (i.e. time) to the spatial blocking by conduct-

ing multiple rounds of computations over reusable data (loaded in

1We use the Roofline model with emphasis on loading data from memory of a machine
model without cache.



GPU-UniCache: Automatic Code Generation of Spatial Blocking for Stencils on GPUs CF’17, May 15-17, 2017, Siena, Italy

cache). This procedure also follows a fixed or predictable pattern,

which matches the idea of our GPU-UniCache framework. How-

ever, considering that the spatial blocking is more fundamental

and essential in blocking techniques, we focus on analyzing the

patterns in spatial blocking for stencils in this paper. Our idea is

general and can be used to construct temporal blocking as reported

in previous research [26, 31].

2.3 GPU Programming Model and Memory
Hierarchy

We use two platforms from different GPU vendors. The first one

is HCC2 for AMD GCN3 (Graphics Core Next) architecture. In the

AMD GCN3 GPU, the basic execution unit is called a wavefront (or

wave, for brevity) and has 64 lanes. Thus, each thread assigned to a

lane ranges from 0 to 63. A wave is assigned to a 16-wide SIMD unit,

where each operation takes 4 cycles to finish. The second platform

is CUDA (Compute Unified Device Architecture) for NVIDIA GPU,

where the basic scheduling unit is a 32-thread warp.

To hide the high latency of off-chip DRAM memory access, mod-

ern GPUs possess a cached memory hierarchy. For AMD GCN3,

each CU has 16-kB vector L1 cache and 64-kB LDS (Local Data

Share) as scratchpad memory. In contrast, each NVIDIA Maxwell

streaming multiprocessor (SMM) has a 96-kB scratchpad memory

(i.e., shared memory), and its L1 cache is unified with texture cache.

Developers use -Xptxas -dlcm=ca at compile time to enable L1

cache.

In considering registers as cache, both AMD’s CU and NVIDIA’s

SMM possess 256-kB register files that support cross-lane data

sharing. For AMD, this is realized with “permute” instructions,

e.g., backward (“ds bpermute b32”) permute. In contrast, NVIDIA

supports a shuffle instruction, i.e., “ shlf”. Both “ds bpermute b32”

and “ shfl” exhibit “pull” semantics, where each thread must read

a register value from a target lane. Currently, the GPUs support

built-in 32-bit data sharing, while for 64-bit data, one needs to split

the data into two values, perform two rounds of data sharing, and

then concatenate the results.

12 9 04 2824 1720

a b dc e f hg

d c ab h g ef

3 2 01 7 6 45

a b dc e f hg

a b dc e f hg

d c ab h g ef

lane0
lane1
lane2
lane3
lane4
lane5
lane6
lane7

addr

src

tmp

idx 3 2 1 0 7 6 5 4

dest

idx

src

dest

lane0
lane1
lane2
lane3
lane4
lane5
lane6
lane7

(a) ds_bpermute_b32 in AMD GCN3 (b) _shfl in Nvidia GPU
Figure 2: Data permute/shuffle in AMD and NVIDIA GPUs. Values in white
are stored in registers and the temporary buffer (tmp) is in gray. 8 threads in
a wave is for illustration only.

The hardware implementation of data sharing and addressing

are different for the two platforms. In AMD GCN3 GPU, LDS is

used to route data between the 64 lanes of a wave, but no actual

LDS space is consumed [1]. Fig. 2a shows the target values of src
that will first be put into a tmp buffer. Then, the indices are deduced

by ignoring the least two significant bits in addr , which are used

2The Heterogeneous Compute Compiler (HCC) is an open-source C++ compiler for
heterogeneous computing. It supports GPUs via HSA-enabled run-time systems and
drivers.

later to select data from tmp. In NVIDIA GPU, threads can directly

“read” data from another thread that is actively participating in the

“ shfl”. Fig. 2b shows that each thread can directly access data in

another thread based on the given index.

2.4 Challenges

2.4.1 Performance. It is critical to take advantage of the cached

memory hierarchy in a GPU via blocking optimizations. Though

modern GPUs provide different options, such as L1 cache, scratch-

pad memory, and registers, it is still unclear where data should be

cached for the different stencils. Fig. 3a shows two types of stencils

(i.e., jacobi-2d and jacobi-3d) that prefer different cache options for

the same platform. On the other hand, for the different blocking

strategies, developers need to adjust the optimizations to achieve

best performance. Fig. 3b shows the diversified performance of

“seidel-2d” stencil on two types of caches (i.e., LDS and registers),

for each of which we use different loading styles. These simple

examples illustrate the challenges encountered by programmers

when implementing stencil codes on GPUs. They also demonstrate

that choosing a “one-size-fits-all” optimization strategy for any

kind of stencil or GPU would be ineffective.

(a) Diff Stencils/GPUs (b) Diff Variants

Figure 3: Diversified performance of stencils under different situations. BRC
and CYC refer to different loading modes, while 1DWav and 2DWav mean
different wave layouts (discussed in Sec. 5).

2.4.2 Programmability. The second challenge encountered by

developers is the programmability issue. They might be involved

in complex implementation details, where, for example, one needs

to figure out how to efficiently organize domain data into indi-

vidual registers across threads in a wave while using registers as

cache. Many other factors can affect how GPU kernel codes are

written, including stencil types, GPU architectures, and blocking

strategies. To address these issues, we present a framework called

GPU-UniCache to automatically generate spatial-blocking codes

that manage data reuse within a GPU.

3 GPU-UNICACHE FRAMEWORK

Fig. 4 highlights the major components of our GPU-UniCache

framework: (1) feature extraction, (2) code generation, and (3) sten-

cil buffer library. Feature extraction discovers the user-defined

conigurations, the stencil types, and the underlying GPU platforms.

Code generation automatically produces stencil codes for the differ-

ent cached systems, i.e. L1 cache, scratchpad memory, and registers.

In essence, the codes focus on loading from and storing to the global

store, during which GPU-UniCache needs to deal with problems

like indexing, synchronization, workload partition, and thread com-

munications. Finally, the stencil buffer library wraps the generated
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codes inside a set of functions with uniform interfaces. We provide

details of how our GPU-UniCache library framework works below.

Framework

Inputs 
Analyzer

• Stencil types;
• GPU configs;
• Block configs;
• … 

Code 
Generation

L1-Cache 
Model

LDS-Cache 
Model

Reg-Cache 
Model

Unified 
Caching 
Interface

Stencil 
Buffer Lib

Figure 4: An overview of the GPU-UniCache framework

At the first step, the inputs analyzer component conducts analy-

sis on the user input parameters and some features extracted from

the underlying GPU platforms. This information includes sten-

cil types (e.g., stencil order, stencil size), block configs (e.g., block

and warp dimensions, blocking strategies), GPU specifications (e.g.,

built-in warp size, ISAs about data exchange). These parameters

assist the framework in realizing the generalized stencil patterns.

The code generation component uses three models on each cache

level for given stencils. In L1-cache model, it mainly uses the hard-

ware’s capability to access the contiguous data. In scratchpad mem-

ory model, it solves the problem of eliminating branches, index

conversion under different blocking strategies. In register model,

it solves how the data are distributed into registers of each thread,

and how the threads communicate with each other to obtain desired

neighbors. The generated codes are for three purposes: cache dec-

laration, which allocates required space for scratchpad or registers;

cache initialization, which loads central and halo data from global

store; cache fetch, which fetches the desired data by using the off-

sets away from the current point. The codes are finally wrapped

into a set of functions by the stencil buffer library component. De-

velopers can call the functions through unified interfaces to design

dedicated stencil kernels for efficacy.

3.1 GPU-UniCache API

The GPU-UniCache library provides the operation functions for

moving data between on-chip storage and off-chip DRAM memory

for stencil computations. Fig. 5 lists the cache classes and their

core member functions. The GPU-UniCache API is object oriented.

The base class defines interface to initialize the cache, i.e. init(),
and access the locations with given relative offsets, i.e. fetch().
Since all these member functions are executed on GPU devices, we

have device qualifiers for NVIDIA GPU, and [[hc]] attribute

specifiers for AMD GCN3 GPU. Internally, the classes use load()
and store() to access locations in cache using local indices. Sub-

classes are devised for different cache storage.

1 template<class T>
2 class GPU_UniCache

3 {
4 protected:
5 virtual T _load(int z, int y=0, int x=0)=0;
6 virtual void _store(T v, int z, int y=0, int x=0)=0;
7 public:
8 virtual void init(T *in, int off, int mode=CYCLIC)=0;
9 virtual T fetch(int z, int y, int x, int tc_i=0)=0;
10 };
11 // Derived classes
12 class L1Cache : public GPU_UniCache{ ... };
13 class LDSCache: public GPU_UniCache{ ... };
14 class RegCache: public GPU_UniCache{ ... };

Figure 5: Interface of GPU-UniCache functions

In Table 2, we list the member functions and corresponding

descriptions. Note, all the member functions need location infor-

mation of the running thread, such as global or local index. For

NVIDIA GPU, no specific arguments need to be transferred to the

functions, since CUDA supports built-in constants regarding the

thread index. For AMD GCN3 GPU, we need to explicitly transfer

such information of tiled index by reference. For brevity, we

don’t list them in the table. In practice, developers create a inher-

ited GPU-UniCache object (e.g., LDSCache) within a device kernel

to declare an empty cache space. After the data have been stored

into cache, they can use the object to get data in neighbors. We

present a working example to show how the GPU-UniCache API

works.

Table 2: GPU-UniCache and its subclass member functions

Function Name Description

(Constructor)(int dz, int
dy, int dx, int h, int tc)

Constructs a specific cache, initializing its attributes of the sten-
cil domain dimensions(dz, dy, dx), order(h), and thread coarsen-
ing factor(tc).

load(int z, int y, int x) Loads data from cache using local indices(z, y, x). If only z is set,
z is the register index.

store(T v, int z, int y, int
x)

Stores data(v) to cache using local indices(z, y, x). If only z is set,
z is the register index.

init(T *in, int off, int
mode)

Initializes the cache from source in. The target domain will be lo-
cated using info. got from the constructor or user-defined offset
off. Workload distribution can switch by mode, which currently
supports CYCLIC and BRANCH styles.

fetch(int z, int y, int x) Fetches data using the offsets(z, y, x) away from the central
point.

3.2 GPU-UniCache Example

We use an example of 2D5Pt GPU kernel (Eq. 1) in Fig. 6 to illus-

trate how to use the API. This stencil simply uses a 2D blocking

optimization strategy and registers as cache. In ln. 4, the kernel de-

clares a RegCache with thread coarsening factor of 4, which means

each thread will perform 4 iterations of stencil computation over 4

points. It is demonstrated that using thread coarsening is useful for

stencils [2, 22] and we will discuss it in details in Sec. 4. Then, we

fill in the register cache by calling init() member function. Here,

we use the loading mode as CYCLYC in ln. 5, which means the

kernel will distribute all the domain data evenly into each thread

in a round-robin fashion. While performing the actual stencil com-

putation (ln. 8 to 12), users only need to provide relative offsets of

target neighbors and the fetch() will figure out where to get the

data.

The GPU-UniCache APIs aim to facilitate the process of ac-

cessing cached data in stencils on Cartesian grids and allow GPU

programmers to develop efficient kernel codes optimized by dif-

ferent blocking strategies. The codes can be easily changed to

work on another cache levels for more efficiency. We can also use

multiple types of caches at the same time by declaring different

GPU-UniCache objects. This could benefit programs which place

significantly high resource pressure on a single type of cache. More

importantly, the kernel codes are portable across different GPU

platforms. We will cover how the GPU-UniCache framework as-

sists in automatically generating the codes for these functions in

Sec. 4.
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1 __global__
2 void kern_2d5pt(float *in, float *out, float a0-4)
3 {
4 RegCache<float> buf(m, n, h, 4);
5 buf.init(in, 0, CYCLIC);
6 // each thread processes 4 points since csr_fct = 4;
7 for (csr_id = 0; csr_id < 4; csr_id++)
8 out[/*global_idx w/ offset csr_id*/] = a0 * buf.fetch(-1, 0, csr_id)+
9 a1 * buf.fetch( 0,-1, csr_id)+
10 a2 * buf.fetch( 0, 0, csr_id)+
11 a3 * buf.fetch( 0, 1, csr_id)+
12 a4 * buf.fetch( 1, 0, csr_id);
13 }

Figure 6: Example of 2D5Pt stencil CUDA kernel using RegCache APIs with
thread coarsening factor csr fct of 4, which means each thread will update 4
cell points. The current cell point is located by using csr id.

4 CODE GENERATION

In this section, we put emphasis on the register and scratchpad

memory methods, since both methods need to explicitly handle

how to access the data. For the member functions of sub-classes in

Sec. 3, we generate the real codes based on our generalized code

constructs and algorithms.

4.1 Input Parameters

The input parameters are used by the framework to understand the

features of target stencil and running environment. Table 3 shows

the list of the required parameters in three types. Among them, the

crs f ct and crs dim are used specifically for thread coarsening in

RegCache methods. RegCache methods handle the computation

based on the unit of wave, whose thread number is usually much

smaller than a thread block, meaningwe need to loadmore halo data.

In contrast, thread coarsening [22] is an optimization technique to

increase the workload of each thread and enable loaded data to be

more reused. Therefore, we use thread coarsening to compensate

low data-reuse rate in RegCache methods.

Table 3: List of input parameters for the code generation

Parameter Name Description

User-defined thread layout

blk dim[3] Thread block dimensions in exponent notations (with a base of 2).
The least significant dimension is blk dim[0].

wav dim[3] Wave dimensions in exponent notations (with a base of 2). The least
significant dimension is wav dim[0].

crs fct Thread coarsening factor. It defines the number of iterative process
the wave will conduct.

crs dim Thread coarsening occurs along which dimension.

Stencil computation characteristics

h Stencil order.
N Stencil size.
sten dim Stencil dimensionality.

GPU architecture characteristics

blk sync() Built-in block-level synchronization barrier.
wav size Number of threads in a wave.
wav shfl(v, id) Machine-dependent register-level data exchange instruction. Data

exchange occurs between calling thread and thread id on value v.

4.2 RegCache Methods

We first look at a specific example of “2D9Pt” stencil and analyze

its data distribution and computation patterns. Fig. 7 shows a

wave with thread layout of 2 × 4 = 8 (i.e., wav dim[1] = 1 and

wav dim[0] = 2) loads required grid points of 4×6 = 24 (i.e., h = 1).

The 24 points are distributed evenly into registers of each thread in

a round-robin fashion, meaning �24/8� = 3 iterations and registers

are needed. To achieve this CYCLIC loading method, we map

these threads to assigned points by using (y,x ) = ((i ·wav size +

tid )/(2wav dim[0] + 2h), (i ·wav size + tid )%(2wav dim[0] + 2h)),
where tid is thread index and i is iteration number. Therefore, for

example, thread 0 will deal with points (0,0), (1,2), (2,4) and store

them in register r , s , t respectively.

0r 1r 2r 3r 4r 5r

6r 7r 0s 1s 2s 3s

4s 5s 6s 7s 0t 1t

2t 3t 4t 5t 6t 7t

dom

Tailing points
dom.begin() dom.end_x()

x-axis

y-
ax

is

2r 3r 4r 5r

0s 1s 2s 3s

friend_id = (lane_id+2+(lane_id>>2)*2)&7;
tx = _shfl(r, friend_id);
ty = _shfl(s, friend_id);
return lane_id < 4? tx: ty;

Accessing NE neighbors
col_lb col_rb

Generated CUDA codes 
to access NE neighbors:

Figure 7: Example of data exchange for “2D9Pt” stencil. The figure illustrates
2 steps of loading and computing. For loading, all the data are distributed
across threads in a 2x4 wave. The ‘2r’ in cell, for example, means the corre-
sponding value will be stored in register r of thread 2. For computing, the
wave updates the gray area. The thread 0 in the wave is in deep gray. The
CUDA codes below are to access the NE neighbors.

The destination points (gray area) are updated by fetching regis-

ters from their neighbors. However, this raises two further ques-

tions: 1, which threads to communicate with; 2, which registers

store the desired neighbors. We observe from Fig. 7 that these

information can be calculated from neighbors of thread 0 in the

wave (located in the red circle). For example, when handling

the northeast (NE) neighbors, we need to know the first neigh-

bor is stored in register 0 (r ) of thread 2. Then, the other neigh-

bor thread index and register index can be calculated by each

thread applying (tid + 2 + tid/2wav dim[0] · 2h)%wav size and

0 + (2 + tid/2wav dim[0] · 2h + tid )/wav size respectively. That

way, thread 0 will interact with thread 2 on register 0 (r ), and si-

multaneously, thread 4 will fetch value of register 1 (s) of thread
0.

With the variety of stencils and options (e.g., thread coarsening

factors and neighbor directions), manually calculating these param-

eters is a painful task. As size and complexity of the target stencil

grow, so does the development cost. Therefore, in our framework,

we first generalize the stencil computation in registers by means

of code constructs. Then, we calculate the parameters using our

proposed formula and algorithm.

Method init(): we only support loading method of CYCLIC

rather than BRANCH in RegCache. The reasons are two-fold: (1)

BRANCH mode will make boundary threads hold too many regis-

ters and thus all the other threads in the same wave have to keep

same number of “idle” registers, leading to register pressure prob-

lem; (2) While accessing neighbors, extra branches are needed to

distinguish the meaningful from these “idle” registers. Code con-

structs in Fig. 8 show how we distribute the DRAM data to registers.

The remapping occurs in ln. 3 to 6 and the fetched data are stored

to registers (ln. 8).

Method fetch(): Fig. 9 exhibits the generalized data exchange

code constructs to fetch data in given direction. The neighbor thread

index is represented by friend id, which depends on the parameter F.
The registers of interest are ranged from regN1 to regN3. Parameter

M is the cut-off marker to select values from different registers.

Here, we only use up to three data exchange operations to fetch

the data, since this number fits in our benchmark of stencils and
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1 // **** CYCLIC ****
2 int it = _lane_id();

3 c_0 = (wav_id0<<wav dim[0]) + it%(2wav dim[0] + 2h);

4 c_1 = (wav_id1<<wav dim[1]) + it/(2wav dim[0] + 2h)

5 %(2wav dim[1] + 2h);

6 c_2 = (wav_id2<<wav dim[2]) + it%(
∏1
k=0

(2wav dim[k ] + 2h));
7 reg_id = 0;
8 _store(in(off,c_2,c_1,c_0),reg_id++);
9 it += wav size;

10 // repeat for
⌈∏2

k=0
(2wav dim[k ] + 2h)/wav size

⌉
times

Figure 8: Code constructs for RegCache init() method

different wave dimensions. For other stencils with higher stencil

order, for example, it is easy to extend the pattern to support more

data exchange operations.

1 // **** Fetch a given neighbor ****
2 friend_id = (lane_id+F+
3 ((lane_id>>wav dim[0]*2*h))&(wav size-1);
4 tx = wav shf l(regN1, friend_id);
5 ty = wav shf l(regN2, friend_id);
6 tz = wav shf l(regN3, friend_id);
7 return ((lane_id < M1)? tx: ((lane_id < M2)? ty: tz));

Figure 9: Code constructs for RegCache fetch() method

Fig. 10 shows the pseudo code of calculating the parameters

based on given inputs from Table 3 (Each direction of neighbors

need a set of the parameters). We define a domain as a set of points

surrounding the first thread in a wave. Since threads might be

coarsened by the factor of crs fct, there are multiple domains

stored in dom (ln. 1 and 17). In the function calculating parameter F
(ln. 1), the identifier of the starting point in each domain is computed

in ln. 8. Then, we sweep all the other points and record the relative

order within the wave (ln. 9). The order is the parameter F, which
can be used later by other threads in the wave to find neighbors

towards the same direction (ln. 2 in Fig. 9). Additionally, we record

the round number in ln. 10, indicating how many registers we have

already used in each thread. Note, the out-of-domain points should

be skipped in ln. 12 to 14.

Subsequently, we need to calculate which registers are used to

store the target neighbors in the wave and how to select data from

these registers. This can be achieved by computing parameters

N and M through the function in ln. 17. The register identifier in

ln. 24 indicates the register storing the first value of neighbors

toward the given direction. Then, we can calculate the boundaries

of neighbors of the entire wave (ln. 27 and 28, also shown in Fig. 7)

which will be used to skip other irrelevant points. If an incoming

point is identified as using a new register in ln. 36 and it is within

the boundary in ln. 38, the new register is recorded with the counter

cnt showing the cut-off location.

After we calculate these parameters, we replacewav shf l () with
“ shfl()” for NVIDIA GPUs and “amdgcn bs bpermute()” for AMD

GCN3 GPUs. Note, for AMD GCN3 GPUs, we need to right shift the

friend id by 2 (Sec. 2.3). If the datatype is double precision number,

we will first split the value into two 32-bit ones, perform two data

exchange instructions, and then concatenate the results.

4.3 LDSCache Methods

Method init(): The major problem encountered by using scratch-

padmemory is conditional branching, since the sizes of thread block

and working data domain don’t match each other. In LDSCache, we

1 void calculate_F(domain* dom)
2 { // compute param F used in friend_id formula
3 for(int c = 0; c < csr_fct; c++)
4 {
5 for(auto pt: dom[c]) // each point in domain
6 {
7 if(pt == dom[c].begin())

8 id = c *
∏
csr dim−1
k=0

(2wav dim[k ] + 2h);
9 pt.F = id % wav size;
10 pt.rid = id / wav size;
11 id++;
12 if(pt == dom[c].end_x()) // skip tailing points

13 id += 2wav dim[0];
14 if(pt == dom[c].end_yx()) //skip tailing lines

15 id += 2wav dim[1] · (2wav dim[0] + 2h);
16 } } }
17 void calculate_NM(domain* dom)
18 { // compute param N M used in data exchange patterns
19 for(int c = 0; c < csr_fct; c++)
20 {
21 for(auto pt: dom[c]) // each point in domain
22 {
23 int i = 1, j = 1;
24 int reg_id = pt.rid;
25 pt.N[i++] = reg_id;
26 int skipped_pts = pt.F + reg_id * wav size;

27 int col_lb = skipped_pts % (2wav dim[0] + 2h);

28 int col_rb = lb + 2wav dim[0];
29 int cnt = 1;
30 bool reg_update = false;
31 while(cnt < wav size)
32 {
33 skipped_pts++;

34 int col_id = skipped_pts % (2wav dim[0] + 2h);
35 int wav_id = skipped_pts % wav size;
36 if(wav_id == 0) // end of current wave
37 reg_id++, reg_update = true;
38 if(col_lb <= col_id && col_id < col_rb)
39 {
40 if(reg_update) // mark the divergence
41 {
42 pt.N[i++] = reg_id;
43 pt.M[j++] = cnt;
44 reg_update = false;
45 } } } } } }

Figure 10: Algorithms to calculate the F, N, and M.

support two loading modes: BRANCH, boundary threads handle

more workloads (i.e. halo points); CYCLIC, threads address the

data domain in a round-robin fashion by remapping themselves.

This way, we can minimize the branches at the expense of more

index conversion calculation. The code constructs of BRANCH are

comprised of multiple conditional statements to assign additional

workloads to boundary threads. The CYCLIC code constructs are

similar with RegCache method (in Fig. 8), but replaced with the

granularity of blk size rather than wav size. In addition, the desti-

nation locations are changed to scratchpad memory. Note, we need

to use an explicit synchronization blk sync() at the end of loading.

Method fetch(): This method is straightforward and we only

need to use the thread local index to fetch desired data, since the

loaded points follow original data layouts and are same by using

BRANCH or CYCLIC mode.

5 EVALUATION

5.1 Experiment Setup

In the section, we evaluate the stencil codes using GPU-UniCache

library. The details of the two platforms are listed in Table 4. We

conduct the tests using both single precision and double precision

numbers.

The benchmark of stencils are listed in Sec. 2.1. We optimize them

using the GPU-UniCache APIs with different blocking strategies.
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(a) jacobi-2d l: single; r: double (HCC) (b) seidel-2d l: single; r: double (HCC) (c) jacobi-2d l: single; r: double (CUDA) (d) seidel-2d l: single; r: double (CUDA)

Figure 11: 2D stencils with HCC and CUDA by GPU-UniCache on AMD and NVIDIA GPUs respectively

Table 4: Experiment Testbeds

AMD NVIDIA

Model Radeon R9 Nano GeForce GTX 980
Codename Fiji XT GM204(Maxwell)
Cores 4096 2048
Core frequency 1000 MHz 1126 MHz
Register file size 256 kB* 256 kB
L1/LDS/L2 16/64/1024 kB -/96/2048 kB
Memory bus HBM GDDR5
Memory capacity 4096 MB 4096 MB
Memory BW 512 GB/s 224 GB/s
GFLOPS float/double 8192/512 4612/144
Software HCC/ROCM 1.2 CUDA 7.5

* Each CU has 256 kB vector registers and an additional 8 kB scalar registers.

The blocking strategies used in 1D and 2D stencils are straightfor-

ward, while in 3D kernels, we use 2.5D and 3D blocking [26] (labeled

as 1DBlk, 2DBlk, 2.5DBlk, and 3DBlk). For LDSCache version, we

try both loading modes: BRANCH and CYCLIC (as BRC and CYC),

while for RegCache, we vary dimensionalities of wave: 1D and 2D

(as 1DWav and 2DWav). The 1DWav is 64 × 1 for AMD and 32 × 1
for NVIDIA, while the 2DWav is 8×8 and 8×4 on the two platforms.

The sizes of data set are 225, 212 × 212, 28 × 28 × 28 for 1D, 2D, 3D
stencils respectively. The test iterates for 100 times. The metric we

use is GFLOPS calculated by (FLOPS · dim2 · dim1 · dim0)/time .

5.2 AMD GCN3 GPU

We use the best speedup achievable when the kernel is optimized

by RegCache or LDSCache, if not mentioned otherwise. For 1D

stencils, the performance numbers are shown in Fig. 12. Different

cache levels show very similar performance. Using LDSCache or

RegCache do not show significant improvements over L1Cache,

because 1D stencil has unit-stride memory access pattern where

the data can be effectively put into cache by hardware. The optimal

achieved with RegCache leads to 15% improvement; LDSCache

achieves up to 13% improvement. We also notice that performance

deteriorates with LDSCache in BRANCH mode for gaussianX7

stencil, due to extra loading operations to perform data transfer

between L1 cache to scratchpad memory and overhead of branches,

which can be offset by using CYCLIC mode.

(a) jacobi-1d l: single; r: double (b) gaussianX7 l: single; r: double

Figure 12: 1D stencils with HCC by GPU-UniCache on AMD GPU

For 2D stencils, L1Cache methods still exhibit competitive per-

formance on AMD GCN3 GPUs (shown in Fig. 11a and 11b). The

maximum speedupswith LDSCache and RegCache surpass L1Cache

when data reuse grows in seidel-2d stencil. In the LDSCache solu-

tion, we first observe that 2D stencils are more sensitive to the load-

ing mode, where CYCLIC mode is generally superior to BRANCH

mode averaging 25% better performance, since more branches are

needed to load surrounding data in 2D stencils. The maximum

improvement of LDSCache over L1Cache is 9%. In RegCache solu-

tion, using 1D wave variant is particularly effective over 2D wave.

1D wave have longer dimension while conducting memory access,

which can better utilize the hardware bandwidth but at the expense

of relatively low data reuse. 2D wave, by contrast, exhibits high

data reuse rate. For example, considering the wave size of 64 on

AMD GPUs, if we organize the wave threads as 64 by 1, we have

to load 66*3=198 elements for the 2D problem with stencil order

of 1. However, if we organize them as 8 by 8, we only need to

load 9*9=81 elements. On the other hand, the former thread layout

can load the data in less memory transactions, leading to its supe-

rior performance. If we consider the effect of thread coarsening

on performance, 2D wave can barely benefit from it, because the

narrowed access stride makes it bound by memory latency. We

record the best speedup of RegCache is 15% over L1Cache.

(a) heat-3d l: single; r: double

(b) jacobi-3d l: single; r: double

Figure 13: 3D stencils with HCC by GPU-UniCache on AMD GPU

Fig. 13 shows more significant and diversified speedups with

RegCache and LDSCache. Differences in the performance are first

reflected in the speedups of the 2.5D and 3D blocking. 2.5D block-

ing gives a speedup of 1.58x over 3D blocking on average. This is
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because 3D blocking has smaller dimensions for the block than 2.5D

blocking if we assume the blocks have same number of threads.

That way, uncoalesced memory access would occur even though it

has better data reuse rate. In the low data-reuse kernels (heat-3d),

L1Cache solution is similar with LDSCache, while the additional

gain is achieved from using RegCache, resulting in up to 30% im-

provement. This is mainly because of the elimination of explicit

synchronization of RegCache in this iterative 2D method. For high

data-reuse kernels (jacobi-3d), LDSCache or RegCache are critical

to get optimal performance. The best improvements are 1.70x for

LDSCache and 1.81x for RegCache over their L1Cache counterpart.

Moreover, we prefer CYCLIC mode in LDSCache in high data-reuse

kernels, observing that the overhead of branches is significantly

high, because, for example, the jacobi-3d stencil has nearly 4 times

more halo elements to load than the heat-3d stencil. For RegCache

solutions, we only record the performance of 2D wave in 3D block-

ing, because using 1D wave instead would be equivalent to the 2.5D

blocking with 1D wave. Also, we only show the results of 1D wave

for 2.5D blocking, since this strategy is preferable and has been

demonstrated. Similarly, 3D blocking encounters higher memory

latency, making itself benefit little from thread coarsening. As a

contrast, 2.5D blocking with 1D wave improves significant after

applying thread coarsening.

The speedups given by thread coarsening in the cases of double

precision numbers are less consistent, where the optimal thread

coarsening factors are only 1 or 2, since operating doubles requires

more space from register files and register pressure would be more

easily reached. Furthermore, because the built-in data exchange of

64-bit data is not supported, we need more operations to achieve

the same functionality, i.e. split the data into two 32-bit data, do

two permutes, and concatenate the two data together.

5.3 NVIDIA Maxwell GPU

On NVIDIA GPU, Fig. 14, 11c and 11d show the performance of

1D and 2D stencils on Maxwell GPU. For low data reuse kernels,

the optimal is achieved by simply using L1Cache. This demon-

strates the need to “opt-in” to enable the global caching in the

Maxwell GPU (Sec. 2.3), which is particularly effective for solving

1D and 2D arrays. The benefits of using LDSCache or RegCache

become obvious when there are high data reuse, achieving up to

5% and 20% improvements for gaussianX7 and seidel-2d stencils

respectively. However, for double datatype, we observe a slowdown

experienced by LDSCache and RegCache. For LDSCache, since the

shared memory banking in Maxwell only supports 4 bytes width

per bank, overhead of accessing 8-byte data is accordingly higher;

for RegCache, more instructions are needed to conduct every data

exchange operations for 8-byte data. Similar to 2D stencils on

GCN3 GPU, CYCLIC mode is of necessity in seidel-2d kernels and

1D wave is preferable because all the threads in the same wave are

able to access consecutive locations to achieve a coalesced memory

transaction.

The performance of 3D stencils shown in Fig. 15 shows diver-

sified speedups after applying different cache levels. Speedups of

using LDSCache or RegCache range from a few percent on the

low data reuse kernels up to 1.64x and 1.83x for high data reuse

(a) jacobi-1d l: single; r: double (b) gaussianX7 l: single; r: double

Figure 14: 1D stencils with CUDA by GPU-UniCache on NVIDIA GPU

kernels with LDSCache and RegCache respectively. The 2.5D block-

ing is still preferred in the 3D stencils and for float datatype, we

record 4% to 12% improvements of the best RegCache over LD-

SCache. 2.5D blocking needs to iteratively load a 2D slice before

conducting actual computation, which will result in overhead of

block-level synchronization. In contrast, RegCache can eliminate

this explicit synchronization, leading to better performance. For

double datatype, using our L1Cache interface can provide com-

petitive performance, mainly because the overhead of operating

doubles in RegCache and LDSCache is relatively high in Maxwell.

(a) heat-3d l: single; r: double

(b) jacobi-3d l: single; r: double

Figure 15: 3D stencils with CUDA by GPU-UniCache on NVIDIA GPU

5.4 Speedups to Existing Benchmarks

In the section, we optimize third-party benchmarks by using GPU-

UniCache. They have been optimized via different spatial block-

ing strategies: 2DConv and 3DConv (PloyBench [29]) use 2D and

3D blocking with L1 cache respectively; stencil (Parboil [32]) is a

“3D7Pt” stencil optimized by 2.5D blocking with shared memory;

stencil2d (SHOC [5]) adopts 2D blocking with shared memory. We

optimize these kernels by using GPU-UniCache and only report the

best performance. Fig. 16 presents the results of the comparisons

on NVIDIA GPU (There are no equivalent benchmarks using HCC

yet). For single datatype, all the optimal GPU-UniCache codes

are using RegCache and can outperform the baselines for up to

1.5x. For double datatype, GPU-UniCache selects L1Cache for 2D

stencils and LDSCache for 3D stencils, mainly because the overhead
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of register shuffle on double grows. The best improvement is as

high as 1.3x speedup.

(a) single datatype (b) double datatype

Figure 16: GPU-UniCache optimized codes vs. existing stencil benchmarks
optimized by spatial blocking on NVIDIA Maxwell GPU

5.5 Discussion

Running Parameters In the experiments, we use the same set-

tings for the kernels to evaluate the performance for two main

reasons. First, we can limit the variables to the options of cache lev-

els and focus on the correlation between performance and different

GPU-UniCache functions. One exception is that we need to shrink

the total number of threads as the thread coarsening factor grows

up in RegCache kernels. Second, the GPU-UniCache APIs are also

designed to enable GPU programmers access to the different caches

simultaneously, especially when the programs encounter high pres-

sure on one single type of resource. Therefore, we need to test the

APIs under the same circumstances. Despite of this, we still observe

the diversified speedups, indicating an auto-tuning framework is

of necessity [10, 21]. We leave this as our future work.

Register Pressure Using too many registers in GPU programs

could reduce the active waves per CU. Table 5 shows the profiling

numbers of register usage from the jacobi-3d stencil which exhibits

the highest data reuse rate. First, as the coarsening factor doubles,

the number of registers increases logarithmically, because coarsen-

ing technique can improve data reuse. Additionally, 2.5D blocking

generally uses more registers than 3D blocking as we discussed in

Sec. 5.2. The kernel of 2.5D blocking with the best performance can

attain 40% occupancy on both GPU platforms. However, consider-

ing its better memory access and high FLOPs, the active waves can

still effectively utilize the computing resources.

Table 5: Register usage of jacobi-3d stencil*

GPU

L1Cache LDSCache RegCache

3DBlk 2.5DBlk 3DBlk
BRC

3DBlk
CYC

2.5DBlk
BRC

2.5DBlk
CYC

3DBlk
2DWav
TC1

3DBlk
2DWav
TC2

3DBlk
2DWav
TC4

2.5DBlk
1DWav
TC1

2.5DBlk
1DWav
TC2

2.5DBlk
1DWav
TC4

AMD 37 101 21 18 40 31 19 31 48 48 59 74
NVIDIA 32 32 30 28 31 31 32 40 56 42 56 80

* Collected by CodeXL 2.2 for AMD GPU and nvprof tool for NVIDIA GPU

6 RELATEDWORK

Since GPU has been a part of general-purpose accelerators, there

are many efforts to optimize stencil computation for high perfor-

mance. Memory access is a key problem, which was addressed

by many research endeavors. Nguyen et al. [26] focus on a novel

3.5D blocking optimization(temporal reuse with 2.5D blocking).

Rawat et al. [30] propose an effective tiling strategy to utilize both

scratchpad memory and registers for 2D/3D stencils. Vizitiu et

al. [35] locate reusable data to constant cache, shared memory, etc.,

to explore performance variance between different NVIDIA GPUs.

Falch and Elster [7] optimize 1D/2D stencils using registers as buffer

with manually written shuffle operations. For large-scaled prob-

lems, the key challenge shifts to communication across compute

nodes [25, 28, 38]. The focus of our work is different, as we are

providing a framework for accessing neighboring data on different

cache levels. It utilizes the knowledge of patterns to automatically

conduct data distribution, synchronization, and communication for

different stencils.

In order to enable the parallel codes cross-platform, developers

prefer to use OpenCL and OpenACC for GPU programming [15, 29].

However, our framework is not based on them, because the current

versions of OpenCL in both AMD and NVIDIA GPUs fall short from

supporting some of the latest features, such as shuffle/permute (nor

in OpenACC). In contrast, these features are well supported by

AMD and NVIDIA’s own programming languages (i.e., HCC and

CUDA). In our GPU-UniCache, we rely on them to design our Reg-

Cache methods. For other methods (i.e. L1Cache and LDSCache),

although they can be ported to OpenCL using local memory or to

OpenACC using tile-clause, one has to explicitly change the logic

of kernel codes or loop structures to switch between different cache

hierarchies.

Another way to achieve performance portability is based on code

generation from parallel patterns and DSLs, such as [12, 13]. Unlike

the irregular algorithms (due to either dataset properties [17–19, 37]

or algorithms themselves [40, 42]), the target kernels usually ex-

hibit fixed or predictable computational motif. Apparently, stencils

belong to this category. Krishnamoorthy et al. [16] propose an

approach to automatically parallelize stencils codes with empha-

sis on loop skewing to handle the load imbalance issues. Cui et

al. [4] focus on directive-based solution to overload computation

and communication in GPU stencils. Luo and Tan [20] propose a

tool to apply locality optimization on stencil loops to utilize com-

puting resources. Many DSLs are used to describe stencil computa-

tions [3, 21]. With DSLs, there are code generation frameworks and

specialized compilers aiming at generating efficient parallel codes

on GPUs [8, 9, 30, 33, 34]. The knowledge is also extended to large-

scaled clusters. Wahib and Maruyama [36] devise framework to

transform CUDA kernels to large-scaled GPU clusters. Physis [24]

is a programming framework for supercomputers with emphasis

on computation and communication overlapping. Furthermore,

considering the large set of stencils and architectures, different

auto-tuning frameworks are proposed to search for the best opti-

mizations for given stencils [21, 43]. Overall, the key distinctive

aspects of our work are: 1) moving the abstraction to a lower level

with emphasis on designing a unified and portable interface to

efficiently access simulation cells in GPU cached systems, 2) ex-

ploiting new data shuffle/permute instructions, 3) using knowledge

of patterns of different spatial blocking. By using GPU-UniCache

generated codes, developers are still in tight control of designing

specific stencil kernels.

7 CONCLUSION

In the paper, we propose a framework GPU-UniCache to automati-

cally generate the library codes to access cached data L1, scratchpad
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memory, and registers of the spatial blocking optimizations for sten-

cils computations. The codes to achieve these functionalities are

automatically generated by our GPU-UniCache framework based

on the information of stencils and underlying architectures. The

GPU-UniCache has facilitated efficiently accessing cache-loaded

data without a tedious code rewrite, a major advantage in design-

ing different stencil codebases. The evaluation demonstrates that

we can get up to 1.8x improvements by only changing the GPU-

UniCache API calls on different GPU platforms.
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