
ASPaS: A Framework for Automatic SIMDization of Parallel
Sorting on x86-based Many-core Processors

Kaixi Hou, Hao Wang, and Wu-chun Feng
Department of Computer Science

Virginia Tech
Blacksburg, VA, 24060

{kaixihou,hwang121,wfeng}@vt.edu

ABSTRACT
Due to the difficulty that modern compilers have in vectoriz-
ing applications on vector-extension architectures, program-
mers resort to manually programming vector registers with
intrinsics in order to achieve better performance. However,
the continued growth in the width of registers and the evolv-
ing library of intrinsics make such manual optimizations te-
dious and error-prone. Hence, we propose a framework for
the Automatic S IMDization of Parallel Sorting (ASPaS)
on x86-based multicore and manycore processors. That is,
ASPaS takes any sorting network and a given instruction
set architecture (ISA) as inputs and automatically gener-
ates vectorized code for that sorting network.

By formalizing the sort function as a sequence of compara-
tors and the transpose and merge functions as sequences of
vector-matrix multiplications, ASPaS can map these func-
tions to operations from a selected “pattern pool” that is
based on the characteristics of parallel sorting, and then gen-
erate the vectorized code with the real ISA intrinsics. The
performance evaluation of our ASPaS framework on the Intel
Xeon Phi coprocessor illustrates that automatically gener-
ated sorting codes from ASPaS can outperform the sorting
implementations from STL, Boost, and Intel TBB.

Categories and Subject Descriptors
D.3.4 [Programming Language]: Processors—Code gen-
eration, Optimization

General Terms
Performance

Keywords
sort; merge; transpose; vectorization; SIMD; ISA; MIC; AVX;
AVX-512;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICS’15, June 8 - 11, 2015, Newport Beach/Irvine, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3559-1/15/06 $15.00.
http://dx.doi.org/10.1145/2751205.2751247.

1. INTRODUCTION
To boost performance, modern processors put multiple

cores onto a single die rather than increase processor fre-
quency. In addition to this inter-core parallelism, a vector
processing unit (VPU) is associated with each core to enable
further intra-core parallelism. Execution on a VPU follows a
“single instruction, multiple data” (SIMD) paradigm by car-
rying out the “lock-step” operations over packed data. Al-
though modern compilers can automatically vectorize most
regular codes, they often fail to vectorize complex loop pat-
terns due to the lack of accurate compiler analysis and ef-
fective compiler transformations [15]. Therefore, the burden
falls on programmers’ shoulders to implement the vectoriza-
tion using intrinsics or even assembly code.

Writing efficient SIMD code by hand is a time-consuming
and error-prone activity. First, the vectorization of existing
(complex) codes requires expert knowledge of the underly-
ing algorithm. Second, the vectorization requires a compre-
hensive understanding of the SIMD intrinsics. The intrin-
sics for data management and movement are as important
as those for computation because programmers often need
to rearrange data in the vector units before sending them
to the ALU. However, the flexibility of the data-reordering
functions is restricted, since directly supporting an arbitrary
permutation is impractical [14]. Consequently, programmers
have to resort to a combination of data-reordering functions
to attain a desired pattern. Third, the architecture-specific
nature of vector instructions, i.e., different processors might
support different vector widths and versions of an instruc-
tion set architecture (ISA), can cause portability issues. For
example, to port Advanced Vector Extensions (AVX) codes
to the AVX-512 architecture of the Intel Many Integrated
Core (MIC), we either need to identify the instructions with
equivalent functionalities or rewrite and tweak the codes us-
ing alternative instructions. While library-based optimiza-
tions [12] can hide the details of vectorization from the end
user, these challenges are still encountered during the design
and implementation of the libraries.

To address the above issues with respect to the sorting
primitive, we propose a framework called ASPaS, short for
Automatic SIMDization of Parallel Sorting, to automati-
cally generate efficient SIMD codes for parallel sorting on
x86-based multicore and manycore processors. ASPaS can
take any sorting network and a given ISA as inputs and au-
tomatically produce vectorized sorting code as the output.
The generated code adopts a bottom-up scheme to sort and
merge segmented data. Because the vectorized sort func-
tion puts partially sorted data in column-major order, AS-



PaS compensates it with the transpose function before the
merge stage. Considering the variety of sorting and merging
networks1 [1] that correspond to different sorting algorithms
(such as odd-even [3], bitonic [3], Hibbard [11], and Bose-
Nelson [4]) and the continuing evolution of the instruction
set [7] (such as SSE, AVX, AVX2, and AVX-512), it is im-
perative to provide such a framework to hide the instruction-
level details of sorting and allow programmers to focus on
the use of the sorting algorithms instead.

ASPaS consists of four major parts: (1) Sorter, (2) Trans-
poser, (3) Merger, and (4) Code Generator. The SIMD
Sorter takes a sorting network as input and generates a
sequence of comparators for the sort function. The SIMD
Transposer and SIMD Merger formalize the data-reordering
operations in the transpose and merge functions as sequences
of vector-matrix multiplications. The SIMD Code Generator
creates an ISA-friendly pattern pool containing the requisite
data-comparing and reordering primitives, builds those se-
quences with primitives, and then maps them to the real
ISA intrinsics.

The major contributions of our work include the following.
First, we propose the ASPaS framework to automatically
generate parallel sorting code using architecture-specific SIMD
instructions. Second, using ASPaS, we generate various par-
allel sorting codes for the combinations of five sorting net-
works, two merging networks, and three datatypes (integer,
float, double) on Intel MIC, and then conduct a series of
evaluations. For the one-word type,2 our SIMD codes can
deliver up to 7.7-fold and 5.7-fold speedups over the serial
sort and merge, respectively. For the two-word type, the cor-
responding speedups are 6.3-fold and 3.7-fold, respectively.
Compared with other single-threaded sort implementations,
including qsort and sort from STL [19], and sort from
Boost [24], our SIMD codes deliver a range of speedups from
2.4-fold to 4.3-fold for the one-word type and 1.3-fold to
2.6-fold for the two-word type. We also wrap up our SIMD
codes into a multi-threaded version. Compared with par-

allel_sort from Intel TBB [21], ASPaS delivers speedups
of up to 2.1-fold and 1.4-fold for the one-word type and the
two-word type, respectively.

2. BACKGROUND
This section presents (1) a brief overview of the vector

architecture of Intel MIC, (2) a domain-specific language
(DSL) to formalize the data-reordering patterns in our frame-
work, and (3) a sorting and merging network.

2.1 Intel MIC Vector Architecture
The MIC coprocessor consists of up to 61 in-order cores,

each of which is outfitted with a new vector processing unit
(VPU). The VPU state for each thread contains 32 512-bit
general registers (zmm0-31), eight 16-bit mask registers (k0-
7), and a status register. A 512-bit SIMD ISA is introduced
in accordance with the new VPU. However, previous SIMD
ISAs, e.g. SSE and AVX, are not supported by the vector
architecture of MIC, due to the issues from the wider vector,
transcendental instructions, etc. [20].

In MIC, each 512-bit vector is subdivided into four lanes
and each lane contains four 32-bit elements. Both of the

1
In this paper, we distinguish the sorting network and the merging

network.
2
We use the Integer datatype as the representative of the one-word

type, and the Double datatype for the two-word type.

lanes and elements are ordered as DCBA. Fig. 1a shows an
example to rearrange data from two vector registers with
the masked swizzle instruction. The intrinsics indicate we
use the mask m1 to select elements from either the swizzled
vector of v1 or the vector v0, and then store the result to a
blended vector t0. The behavior of the mask in Intel MIC
is non-destructive, in that no element in source v0 has been
changed if the corresponding mask bit is 0.

1

t0=_mm512_mask_swizzle_epi32
    (v0, m1, v1,    
    _MM_SWIZ_REG_BADC);

v1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14(tmp)

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

17 18 1 2 21 22 5 6 25 26 9 10 29 30 13 14

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

v0 

m1

t0

swizzle

Lane D Lane C Lane B Lane A
D C B A D C B A D C B A D C B A

intrinsics

(a) masked swizzle

t0=_mm512_permute4f128_epi32 

    (v0, _MM_PERM_DBCA);

v0=_mm512_shuffle_epi32

    (t0, _MM_PERM_DBCA);

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 9 10 11 12 5 6 7 8 13 14 15 16

1 3 2 4 9 11 10 12 5 7 6 8 13 15 14 16

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

L
0

L
1

L
2

L
3

v0 

t0

v0 

Element Muxes

Lane D Lane C Lane B Lane A
D C B A D C B A D C B A D C B A

intrinsics

Lane Muxes

(b) permute and shuffle
Figure 1: Rearrange data on Intel MIC from: (a) two vector registers
with the masked swizzle operation; (b) the same vector register with
the permute and shuffle operations

Fig. 1b illustrates an example to rearrange data in the
same vector register with the shuffle and permute intrinsics.
The permute intrinsic using _MM_PERM_DBCA is for inter-lane
rearrangement, which exchanges data in lanes B and C. The
shuffle intrinsic with the same parameter is for intra-lane
rearrangement to exchange elements at positions B and C of
the same lane. This figure also shows the micro-architecture
details [14]. The Lane Muxes are used to select desired lanes,
and the Element Muxes are used to select desired elements
in each lane. Because the permute and shuffle intrinsics are
executed by different components of the hardware, it is pos-
sible to overlap the permute and shuffle intrinsics with a
pipeline mode. In the design of ASPaS, we use this charac-
teristic to obtain instruction-level overlapping.

2.2 DSL for Data-Reordering Operations
To better describe the data-reordering operations, we adopt

the representation of a domain-specific language (DSL) from [8,
27] but with some modification. In the DSL, the first-order
operators are adopted to define operations of basic data-
reordering patterns, while the high-order operators connect
such basic operations into complex ones. Those operators
are described as below.
First-order operators (x is an input vector):

S2 (x0, x1) 7→ (min(x0, x1),max(x0, x1)). The compar-
ing operator resembles the comparator which accepts
two arbitrary values and outputs the sorted data. It
can also accept two indexes explicitly written in fol-
lowing parentheses.

An xi 7→ xj , 0 6 i, j < n, iff Aij = 1. An represents an
arbitrary permutation operators denoted as a permu-
tation matrix which has exactly one “1” in each row
and column.



In xi 7→ xi, 0 6 i < n,. In is the identity operator
and outputs the data unchanged as its inputs. Es-
sentially, In is a diagonal matrix denoted as In =
diag(1, 1, · · · , 1).

Lkm
m xik+j 7→ xjm+i, 0 6 i < m, 0 6 j < k. Lkm

m is a
special permutation operator, performing a stride-by-
m permutation on the input vector of size km.

High-order operators (A, B are two permutation operators):

(◦) The composition operator is used to describe a data
flow. An ◦ Bn means a n-element input vector is first
processed by An and then the result vector is processed
by Bn. The product symbol

∏
represents the iterative

composition.
(⊕) The direct sum operator is served to merge two oper-

ators. An ⊕ Bm indicates that the first n elements of
the input vector is processed by An, while the rest m
elements follow Bm.

(⊗) The tensor product we used in the paper will appear
like Im ⊗ An, which equals to An ⊕ · · · ⊕ An. This
means the input vector is divided into m segments,
each of which is mapped to An.

With the DSL, a sequence of data comparing and reordering
patterns can be formalized and implemented by a sequence
of vector-matrix multiplications. Note that we only use the
DSL to describe the data-comparing and data-reordering
patterns instead of creating a new DSL.

2.3 Sorting and Merging Network
The sorting network is designed to sort the input data by

using a sequence of comparisons, which are planned out in
advance regardless of the value of the input data. The sort-
ing network may depend on the merging network to merge
pairs of sorted subarrays. Fig. 2a exhibits the Knuth di-
agram [1] of two identical bitonic sorting networks. Each
4-key sort network accepts 4 input elements. The paired
dots represent the comparators that put the two inputs into
the ascending order. After threaded through the wires of
the network, these 4 elements are sorted. Fig. 2b is a merg-
ing network to merge two sorted 4-key vectors to an entirely
sorted 8-key vector. Although sorting and merging networks
are usually adopted in the circuit designs, it is also suitable
for SIMD implementation thanks to the absence of unpre-
dictable branches.

0

1

2

3

4

5

6

7

(a) sorting networks

0

1

2

3

4

5

6

7

(b) merging network
Figure 2: Bitonic sorting and merging networks (a) Two 4-key sorting
networks (b) One 8-key merging network

In this paper, the sorting and merging networks are repre-
sented by a list of comparators, each of which is denoted as
CMP(x, y) that indicates a comparison operation between
x-th and y-th elements of the input data.

3. METHODOLOGY
Our parallel sorting adopts a bottom-up approach to sort

and merge segmented data, as illustrated in Alg. 1. This
algorithm first divides the input data into contiguous seg-
ments, each of which size equals to a multiple times of
SIMD width. Second, it loads each segment into registers
and do the in-register vectorized sorting by calling the func-
tions of aspas_sort and aspas_transpose (the sort stage in
line 3-7). Then, the algorithm will merge successive sorted
segments iteratively to generate the final output by call-
ing aspas_merge (the merge stage of line 9-13). The func-
tions of load, store, aspas_sort, aspas_transpose, and
aspas_merge will be generated by ASPaS using the ISA-
specific intrinsics. Because the load and store can be trans-
lated to the intrinsics once the ISA is given, we focus on
other three functions with the prefix aspas_ in the remain-
ing sections.

Algorithm 1: ASPaS Parallel Sorting Structure

/* w is the SIMD width */
1 Function aspas::sort(Array a)
2 Vector v1, ..., vw;
3 foreach Segment seg in a do
4 // load seg to v1, ..., vw

5 aspas sort(v1, ..., vw);
6 aspas transpose(v1, ..., vw);
7 // store v1, ..., vw to seg

8 Array b← new Array[a.size];
9 for s←w; s < a.size; s*=2 do

10 for i←0; i < a.size; i+=2*s do
11 // merge subarrays a + i and a + i + s
12 // to b + i by calling Function aspas::merge()

13 // copy b to a

14 return;

15 Function aspas::merge(Array a, Array b, Array out)
16 Vector v, u;
17 // i0, i1, i2 are offset pointers on a, b, out
18 // load w numbers from a to v
19 // load w numbers from b to u
20 aspas merge(v, u);
21 // store v to out and update i0, i1, i2
22 while i0 6 a.size and i1 6 b.size do
23 if a[i0]6 b[i1] then
24 // load w numbers from a + i0 to v
25 else
26 // load w numbers from b + i1 to v
27 aspas merge(v, u);
28 // store v to out + i2 and update i0, i1, i2
29 // process the remaining elements in a or b
30 return;

Fig. 3 illustrates the structure of the ASPaS framework
and the generated sort function. Three modules of ASPaS
—SIMD Sorter, SIMD Transposer, and SIMD Merger — are
responsible for generating the sequences of comparing and
data-reordering operations for the corresponding functions.
These sequences will be mapped to the real SIMD intrinsics
by the module of SIMD Code Generator.

3.1 SIMD Sorter
The operations of aspas_sort are generated by the SIMD

Sorter. As shown in Fig. 4, aspas_sort loads the n-by-
n matrix of data into n vectors and processes them based
on the given sorting network, leading to the data sorted
along each column of the matrix. Fig. 5 presents an exam-
ple of a 4-by-4 data matrix going through a 4-key sorting
network. Here, each dot represents one vector and each ver-
tical line represents the vectorized comparison on the corre-
sponding vectors. After six comparisons, the original data



Merge StageSort Stage

SIMD Matrix 
TransposerSIMD Sorter

Check validation

SIMD Merger

Unsorted 
data

p
ar

ti
al

ly
 

so
rt

ed

SIMD Code Generator

Sorted 
data

Sorting networks Merging networks

ASPaS Framework

ISA-friendly 
primitive pool

Real SIMD 
inst.

tr
an

sl
at

e
 

aspas_sort() aspas_transpose() aspas_merge()

ASPaS::sort()

Figure 3: The structure of ASPaS and the generated sort

is sorted in ascending order in each column. Fig. 5 also
shows the data dependency among these comparators. For
example, CMP(0,1) and CMP(2,4) can be issued simulta-
neously, while CMP(0,3) can occur only after these two. It
is straightforward to achieve three groups of comparators
for this sorting network. However, for some sorting net-
works, we need a careful analysis of the data dependency
when grouping the comparators. In the SIMD Sorter, we de-
sign an optimized grouping mechanism to analyze the input
sequence of comparators and organize them into multiple
groups. Our mechanism can facilitate the code generation
by minimizing the number of groups, and in turn, reduce
the code size.

seg1

seg2

seg3

segn

n-key 
sorting 

network so
rt

e
d

so
rt

e
d

so
rt

e
d

aspas_sort() aspas_transpose()

sorted

sorted

sorted

sorted

n

n

g
at

h
er

in
g

Figure 4: Mechanism of the sort stage: operations generated by SIMD
Sorter and SIMD Transposer

7 6 5 4

5 2 8 2

9 1 9 5

3 5 6 7

v0

v1

v2

v3
4-key sorting 

network

3 1 5 2

5 2 6 4

7 5 8 5

9 6 9 7

Figure 5: Four 4-element vectors go through the 4-key sorting net-
work. Afterwards data is sorted in each column of the matrix.

Fig. 6 shows the Knuth diagram based on the Bose-Nelson
sorting network [4]. The results of the original grouping
mechanism and the optimized grouping mechanism are shown
in this figure. The original grouping mechanism puts one
comparator into the current group if this comparator has
no data dependency with all the other operators in the cur-
rent group; otherwise, a new group is created for this oper-
ator. As a result, the comparators are organized as seven
groups by this scheme. However, if no data dependency ex-
ists among adjacent comparators, changing their order does
not matter. Our optimized grouping exploits this feature
and optimizes the original grouping. That is, it not only
checks the data dependency between the comparators within
the current group, but it also checks previous groups in a
traceback manner until the data dependency is found or all
groups are checked. Then, the comparator is put into the
last-found group without any data dependency. By using
this scheme, we can reorder S2(3,7) and S2(2,6) and place
them into the appropriate groups. As a result, the num-
ber of groups with the optimized grouping is decreased from
seven to six.

0. S2(0, 1);S2(2, 3);S2(4, 5);S2(6, 7);

1. S2(0, 2);S2(1, 3);S2(4, 6);S2(5, 7);

2. S2(1, 2);S2(5, 6);S2(0, 4);S2(3, 7);

3. S2(1, 5);S2(2, 6);

4. S2(1, 4);S2(3, 6);

5. S2(2, 4);S2(3, 5);

6. S2(3, 4);

0. S2(0, 1);S2(2, 3);S2(4, 5);S2(6, 7);

1. S2(0, 2);S2(4, 6);S2(1, 3);S2(5, 7);

2. S2(1, 2);S2(5, 6);S2(0, 4);

3. S2(1, 5); 

4. S2(1, 4);S2(2, 6);S2(3, 7);

5. S2(3, 6);S2(2, 4);

6. S2(3, 5);

7. S2(3, 4);

Original Grouping

Optimized Grouping

Bose-Nelson Sorting Network

CMP(0, 1);CMP(2, 3);CMP(4, 5);CMP(6, 7);

CMP(0, 2);CMP(4, 6);CMP(1, 3);CMP(5, 7);

CMP(1, 2);CMP(5, 6);CMP(0, 4);CMP(1, 5); 

CMP(1, 4);CMP(2, 6);CMP(3, 7);CMP(3, 6);

CMP(2, 4);CMP(3, 5);CMP(3, 4);

Input Macros

Knuth diagram 
0

1

2

3

4

5

6

7

M
a
p
p

in
g

 &
 

G
ro

u
p

in
g

Figure 6: Results of two grouping mechanisms for the Bose-Nelson
sorting network. The input is the comparator sequence of the sorting
network, and the output is the sequence of grouped S2 comparison
operators of DSL.

To generate the SIMD codes for the aspas_sort, we keep
two sets of vector variables a and b. Initially, all the loaded
vectors are stored in the set a. Then, we move through the
groups of the sorting network. For each comparator in the
current group, we generate the operations to compare the
vector variables, and the results are stored to the set b. For
those vectors not used in the current group, we directly copy
them to set b. For the next group, we flip the identities of
a and b. Therefore, the set b becomes the input, and the
results will be stored back to a. This process continues until
all groups of the sorting network are gone through. Finally,
we obtain all the operations, which will be mapped to the
ISA-specific intrinsics (_mm512_max and _mm512_min) later
by the SIMD Code Generator. At this point, the data is
partially sorted but stored in column-major order.

3.2 SIMD Transposer
As illustrated in Fig. 4, the aspas_sort function has scat-

tered the sorted elements in column-major order. The next
task is to gather them into the same vectors (i.e., rows). The
gathering process corresponds to a matrix transpose. There
are two alternative methods to achieve matrix transposition
on Intel MIC: one uses the gather/scatter SIMD intrinsics
introduced in AVX-512; and the other uses the in-register
matrix transpose. The first solution provides a convenient
means to handle the scattered data in memory, but with
the penalty of high latency from the non-contiguous mem-
ory access. The second solution can avoid such a penalty
but at the expense of using complicated data-reordering op-
erations. Considering the high latency of the gather/scatter
intrinsics and the incompatibility with architectures that do
not have gather/scatter intrinsics, we choose the second so-
lution for the SIMD Transposer. In order to decouple the
binding between the operations of matrix transpose and the
real intrinsics with various SIMD widths, we formalize the
data-reordering operations using the sequence of the per-
mutation operators. After that, we can hand it over to the
SIMD Code Generator to generate the efficient SIMD code
for the aspas_transpose function.

∏t−1
j=1(L2t

2 ◦ (I2t−j−1 ⊗ L2j+1

2j ) ◦ (I2t−j ⊗ L2j

2 ) ◦ L2t

2t−1 [vindex, vindex+2j−1 ]) (1)

Eq. 1 shows the operations performed on the preloaded vec-
tors for the matrix transpose, where w is the SIMD width
of the vector units, t = log(2w), and for each j, index ∈
{i · 2j + n|0 6 i < w

2j
, 0 6 n < 2j−1}, which will create

w
2j
·2j−1 = w

2
pairs of operand vectors for each preceding se-



quence of permutation operators. The square brackets wrap
these pairs of vectors.

3 1 5 2

5 2 6 4

7 5 8 5

9 6 9 7

v0

v1

v2

v3

v00= 3

v01= 1

v02= 5

v03= 2

v10= 5

v11= 2

v12= 6

v13= 4

4

22 LI 2
24 LI

3 =v00

5 =v01

5 =v02

6 =v03

1 =v10

2 =v11

2 =v12

4 =v13

v20= 7

v21= 5

v22= 8

v23= 5

v30= 9

v31= 6

v32= 9

v33= 7

4
22 LI 2

24 LI
7 =v20

9 =v21

8 =v22

9 =v23

5 =v30

6 =v31

5 =v32

7 =v33

v00= 3

v01= 5

v02= 5

v03= 6

v20= 7

v21= 9

v22= 8

v23= 9

3 =v00

5 =v01

7 =v02

9 =v03

5 =v20

6 =v21

8 =v22

9 =v23

8
41 LI 4

22 LI

v10= 1

v11= 2

v12= 2

v13= 4

v30= 5

v31= 6

v32= 5

v33= 7

1 =v10

2 =v11

5 =v12

6 =v13

2 =v30

4 =v31

5 =v32

7 =v33

8
41 LI 4

22 LI

3 5 7 9

1 2 5 6

5 6 8 9

2 4 5 7

v0

v1

v2

v3

1 2j=1 j=2

1 2

All the 
vectors go 
through

   

   

8
4L

8
4L

8
4L

8
4L8

2L

8

2L
8
2L

8

2L

Figure 7: Four 4-element vectors transpose with the formalized per-
mutation operators of DSL.

Fig. 7 illustrates an example with the SIMD width w = 4.
The elements are preloaded to vectors v0, v1, v2, and v3 and
have already been sorted vertically. Since t − 1 = 2, there
are 2 steps denoted as 1© and 2© in the figure. When j = 1,
the permutation operators are applied on the pairs [v0, v1]
and [v2, v3]; and when j = 2, the operations are on the pairs
[v0, v2] and [v1, v3]. The figure shows the values when the
vectors go through the two steps accordingly. After that,
the matrix is transposed, and the elements are gathered in
the same vectors.

3.3 SIMD Merger
After the data is sorted in each segment using the as-

pas_sort and aspas_transpose, the aspas_merge is used
as a kernel function to combine pairs of sorted data into a
larger sequence iteratively. This function is generated by
SIMD Merger based on appropriate merging networks, e.g.,
odd-even and bitonic networks. Here, we adopt the bitonic
merging network for two reasons: (1) the bitonic merging
network can be easily extended to any 2n sized data; and
(2) in each comparison step, all elements from the input
vectors are processed, leading to symmetric operations on
the elements. As a result, it is much easier to vectorize the
bitonic merging network than others. From the perspective
of the implementation, we have provided two variants of the
bitonic merging networks [27], whose data-reordering oper-
ations can be formalized, as shown below.∏t

j=1(I2j−1 ⊗ L2t−j+1

2 ) ◦ (I2t−1 ⊗ S2) ◦ (I2j−1 ⊗ L2t−j+1

2t−j )[v, u] (2)

∏t
j=1 L

2t

2 ◦ (I2t−1 ⊗ S2)[v, u] (3)

Similar with Section 3.2, t = log(2w), where w is the SIMD
width of the vector units. The vectors v and u represent
two sorted sequences (the elements of vector u are inversely
stored in advance). In Eq. 2, the data reordering opera-
tions are controlled by the variable j and changed in each
step, while in Eq. 3, the permutation operators are indepen-
dent with j, leading to the uniform data reordering patterns
in each step. Therefore, we call the pattern in Eq. 2 as
the inconsistent and that in Eq. 3 as the consistent. These
patterns will be transmitted to SIMD Code Generator and
generate the aspas_merge function. We will present the per-
formance comparison of these two patterns in Section 4.

Figure 8 presents an example of these two variants of
bitonic merging networks with the SIMD width w = 4.

v0=3

v1=5

v2=7

v3=9

u0=6

u1=5

u2=2

u3=1

1=v0

2=v1

3=v2

5=v3

5=u0

6=u1

7=u2

9=u3

v0=3

v1=5

v2=7

v3=9

u0=6

u1=5

u2=2

u3=1

8
2L

1=v0

2=v1

3=v2

5=v3

5=u0

6=u1

7=u2

9=u3

8
2L 8

2L

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

1 2 3

1' 2' 3'

8
21 LI  8

41 LI  4
22 LI  4

22 LI  2
24 LI  2

11 LI 

1 2 3 5

5 6 7 9

v

u

1 2

Two 
vectors go 
through

3 5 7 9

6 5 2 1

v

u

3

or
1' 2' 3'

inconsistent 
patterns

consistent 
patterns

j=1 j=2 j=3

j=1 j=2 j=3

Figure 8: Two formalized variants of bitonic merging networks: the
inconsistent pattern and the consistent pattern. All elements in vector
v and u are sorted, but inversed in vector u.

As shown, the data-reordering operations derived from the
inconsistent pattern are different in each step, while those
from the consistent one are identical. Although the data-
reordering operations adopted by these two variants are quite
different, both of them can successfully achieve the merging
functionality within the same number of steps, which is de-
termined by the SIMD width w.

3.4 SIMD Code Generator
This module takes the data comparison operations from

SIMD Sorter and the data-reordering operations from SIMD
Transposer and SIMD Merger as the input to produce the
real vectorized codes. Considering the simplicity of mapping
the data comparison operations to real SIMD intrinsics, in
this section, we only focus on how to find the most effi-
cient intrinsics sequence to attain the given data-reordering
operations. Our method is first to build a primitive pool
based on the characteristics of the data-ordering operations,
then dynamically build the primitive sequences based on
the matching score between what we have achieved on the
way and the targeting pattern, and finally map the selected
primitives to the real intrinsics.

3.4.1 Primitive Pool Building
Different with the previous research, e.g. the automatic

Fast Fourier transform (FFT) vectorization [17] using the ex-
haustive and heuristic search on all possible intrinsics com-
binations, we first build an ISA-friendly primitive pool to
prune the search space. The most notable feature of the
data-reordering operations for the transpose and merge is
the symmetry: all the operations applied on the first half of
the input are equivalent with those on the second half in a
mirror style. So, to produce efficient operation sequences, we
assume all the components of the sequences are also symmet-
ric. We categorize these components as (1) the primitives
for the symmetric permute operations on the same vector
and (2) the primitives for the blend operations across two
vectors.

Permute Primitives: For Intel MIC, there are 4 32-bit
words (e.g. Integer or Float) per lane and 4 lanes in total
for each vector register. Although there are 44 = 256 possi-
bilities for either intra-lane or inter-lane permute operations,
we only consider those permutations without repetition and
thus reduce the possibilities to 4! = 24. Among them, only



8 symmetric data-reordering patterns will be selected, i.e.
DCBA(original order), DBCA, CDAB, BDAC, BADC, CADB, ACBD,
and ABCD, in which each letter denotes an element or a lane.

Blend Primitives: To guarantee the elements of the blended
vector are from the two input vectors equally and symmet-
rically, we boil down the numerous mask modifiers to a few
pairs of patterns. We define a pair as (0 2i, 2i 2i), where
0 6 i < log(w) and w is the vector length. Each pattern in
the pair represents a 2i+1-bit stream. The first number 0 or
2i represents the offset of the first 1, and the second num-
ber 2i is the number of consecutive 1s. All the other bits
in the bit stream are filled with 0s. The bit streams will be
extended to the real masks by duplicating themselves w

2i+1

times. For Intel MIC with the w equal to 16, there are 4
pairs of patterns: (0 1, 1 1), (0 2, 2 2), (0 4, 4 4), and (0 8,
8 8). Among them, the pair (0 2, 2 2), where i is equal to 1,
represents the bit streams 1100 and 0011. The correspond-
ing masks are (1100)4 and (0011)4.

Now, we can categorize the primitives into 4 types based
on permute or blend and intra-lane or inter-lane. Table 1
illustrates the categories and the corresponding operations,
where the vector width w is set to 8 (containing 2 lanes) to
save the space.

Table 1: Primitive Types

Type Example (vector width=8)

intra-lane-permute ABCDEFGH→BADCFEHG (cdab)
inter-lane-permute ABCDEFGH→EFGHABCD (--ab)
intra-lane-blend ABCDEFGH|IJKLMNOP→ABKLEFOP (2 2)
inter-lane-blend ABCDEFGH|IJKLMNOP→IJKLEFGH (0 4)

ASPaS stores these primitives as the permutation matri-
ces. Since the blend primitives always work over two input
vectors, the input can be concatenated as one 2w vector and
the dimensions of the permutation matrices are expanded
to 2w by 2w. In order to unify the format, for the permute
primitives, we add an empty vector and specify the primitive
operates on the first vector v or the second vector u. There-
fore, on MIC, there are 32=8(permute primitives)∗2(intra-
lane or inter-lane)∗2(operating on v or u) and 8(4 pairs of
the blend primitives) permutation matrices. Fig. 9 illus-
trates examples of the permutation matrices. The matrix
“shuffle cdab v”and“shuffle cdab u”correspond to the same
permute primitive on two halves of the concatenated vector.
The matrix “blend 0 1 v” and “blend 1 1 u” correspond to
one pair of blend primitives (0 1, 1 1). Finally, 4 sub-pools
of permutation matrices are created according to the 4 prim-
itive types.

rule2

pairing

rule1



















0100
1000
0001
0010

4IAs



















0000
0100
0000
0001

40 IAb



















1000
0000
0010
0000

41 IAb

shuffle_cdab_v shuffle_cdab_u

blend_0_1_v blend_1_1_u

pairing








160

0

I

As








sA

I

0

016








161

0 0

IA

A

b

b








1

016

0 b

b

A

AI

Figure 9: Permute matrix representations and the pairing rules

3.4.2 Sequence Building
ASPaS takes two rules in the sequence building algorithm

to facilitate the building process. The rules are based on two
observations from the formalized data-reordering operations
illustrated in Eq. 1, Eq. 2, and Eq. 3. Obs.1 The data-
reordering operations are always conducted on two input

vectors. Obs.2 The permute operations always accompany
the blend operations to keep them symmetric. Fig. 10 shows
the data-reordering pattern of a symmetric blend, which is
essentially the first step in Fig. 7. Because such an interleav-
ing mode of symmetric blend cannot be directly achieved by
the blend primitives, which are limited to pick elements from
aligned positions of two input vectors, the associative per-
mute primitives are necessary and coupled with the blend
primitives, as the figure shown. Hence, two rules used in
the sequence building algorithm are described as below.
Rule 1: when a primitive is selected for one vector v, pair the
corresponding primitive for the other vector u. For a per-
mute primitive, the corresponding permute has the totally
same pattern; while for a blend primitive, the corresponding
blend has the complementary mask, which has already been
paired.
Rule 2: when a blend primitive is selected, pair it with
the corresponding permute primitive: pair the intra-lane-
permute with CDAB pattern for (0 1, 1 1) blend, the intra-
lane-permute with BADC for (0 2, 2 2), the inter-lane-permute
with CDAB for (0 4, 4 4), and the inter-lane-permute with
BADC for (0 8, 8 8).

u0 u1 u2 u3v0 v1 v2 v3

u0 u1u2 u3v0 v1v2 v3

Part 1 Part 2

(a) sym-blend

u0u1 u2u3v0 v1 v2 v3 u0 u1 u2 u3v0v1 v2v3

u0 u2v0 v2 u1 u3v1 v3

Part 1 Part 2

u0 u1 u2 u3v0 v1 v2 v3 u0 u1 u2 u3v0 v1 v2 v3

shuffle_cdab shuffle_cdab

blend_0_1 (1010)blend_1_1 (0101)

u0u1 u2u3 v0v1 v2v3

(b) sym-blend(details)
Figure 10: Symmetric blend operation and its pairing details

The sequence building algorithm can generate sequences
of primitives to implement a given data-reordering pattern
for Eq. 1, Eq. 2, and Eq. 3. Two 2w-sized vectors are used
as the input. The vecinp represents the original concatenated
vector of v and u and is set to the default offsets (from 1
to 2w). The vectrg is the target derived by applying the
desired data-reordering operators on the vecinp. Our algo-
rithm will select the permutation matrices from the primi-
tive pool, do the vector-matrix multiplications on the vecinp,
and check whether the intermediate result vecim approxi-
mates the vectrg. We define two types of matching score to
exhibit how well the vecim matches the vectrg:
l-score lane-level matching score, accumulate by one when

the corresponding lanes have exactly same elements
(no matter orders).

e-score element-level matching score, increase by one when
the element matches its counterpart in the vectrg.

If only considering the 32-bit words with w (vector width)
and e (number of elements per lane), the maximum l-score
equals to 2w/e when all the aligned lanes from two vectors
match, while the maximum e-score is 2w when all the aligned
elements match. With the matching scores, the process of
sequence building is transformed to score computations. For
example, if we have the input“ABCDEFGH”and the output
“HGDCFEBA” (assuming four lanes and two elements per
lane), we first search primitives for the inter-lane reordering,
e.g, from “ABCDEFGH” to “GHCDEFAB”, and then search
primitives for the intra-lane reordering, e.g., from “GHCDE-
FAB” to “HGDCFEBA”. By checking the primitives hierar-
chically, we add those primitives increasing l-score or e-score
and approximating to the desired output pattern.



Alg.2 shows the pseudocode of the sequence building al-
gorithm. The input includes the aforementioned vecinp and
vectrg. The output seqsret is an array to hold selected se-
quences of primitives, which will be used to generate the
real ISA intrinsics later. The seqscand is used to store candi-
date sequences and initialized to contain an empty sequence.
First, the algorithm checks the initial vecinp with the vectrg
and get the l-score. If it equals to 2w/e, which means corre-
sponding lanes have matched, we only need to select prim-
itives from “intra-lane-permute” (ln.4) and care about the
e-score. Otherwise, we will work on the sub-pools of type
1, 2, or 3 in a round-robin manner. In the while loop, for
each sequence in seqscand, we first calculate the l scoreold,
and then we will get l scorenew by checking primitives one
by one from the current type. If the primitive prim comes
from the “inter-lane-permute”, we produce the paired per-
mute primitive primprd based on the Rule 1 (ln.14). If prim
is from the blend types, we produce the paired blend prim-
itive primprd based on the Rule 1 and then find their paired
permute primitives perm0 and perm1 based on the Rule 2
(ln.18-20). The two rules help to form the symmetric oper-
ations.

After the selected primitives have been applied, which cor-
responds to several vector-matrix multiplications, we can
get a vecupd, leading to a new l-score l scorenew compared to
vectrg (ln.25). If the l-score is increased, we add the sequence
of the selected primitives to seqscand. The threshold (ln.7)
is a configuration parameter to control the upper bound of
how many iterations the algorithm can tolerate, e.g., we set
it to 9 in the evaluation so as to find the sequences as many
as possible. Finally, we use PickLaneMatched to select those
sequences that can make l-score equal to 2w/e, and go to the
“intra-lane-permute” selection (ln.32), which can ensure us
the complete sequences of primitives.

Now, we can map the sequences from the seqsret to the
real ISA intrinsics. We have two criteria to pick up the
efficient sequences. The first criterion is the length of the
sequence. We prefer the shortest one. The second criterion
is when multiple shortest solutions exist, we prefer the in-
terleaved style of inter-lane and intra-lane primitives, which
could be executed with a pipeline mode on Intel MIC as
discussed in Sec.2.1. When the most efficient sequences are
collected, we convert them into real intrinsics. For the primi-
tives from“intra-lane-permute”and“inter-lane-permute”, we
directly map them into vector intrinsics of _mm512_shuffle
and _mm512_permute4f128 with corresponding permute pa-
rameters. For the primitives of“intra-lane-blend”and“inter-
lane-blend”, we map them to the masked variants of permute
intrinsics _mm512_mask_shuffle and _mm512_mask_permute

4f128. The masks are from their blend patterns. If the
primitive belongs to “intra-lane” and the permute parame-
ter is supported by the swizzle intrinsics, we will use the
light-weighted swizzle intrinsics instead.

3.5 Thread-level Parallelism
After generating the intrinsics sequences for the vector

comparators and the data-reordering operators in the as-

pas_sort, aspas_transpose, and aspas_merge, we have the
single threaded version of the aspas::sort and aspas::merge

as illustrated in Alg.1. In order to maximize the utilization
of the computational resources of Intel MIC, we integrate
these two functions with the thread-level parallelism using
Pthreads. First, we make each thread work on their own

Algorithm 2: Sequence Building Algorithm

Input: vecinp, vectrg
Output: seqsret

1 Sequences seqscand ← new Sequences(∅); // put an null sequence
2 Int l scoreinit ←LaneCmp(vecinp, vectrg);
3 if l scoreinit=2w/e then
4 seqsret ← InstSelector(seqscand,Type[0]);
5 else
6 i←1;
7 while not Threshold() do
8 ty ←Type[i];
9 foreach Sequence seq in seqscand do

10 vecim ←Apply(vecinp, seq);
11 l scoreold ←LaneCmp(vecim, vectrg);
12 foreach Primitive prim in ty do
13 if n=1 then
14 primprd ←Pair(prim, RULE1);
15 vecupd ←Apply(vecim, prim + primprd);
16 seqext ←prim + primprd;

17 else
18 primprd ←Pair(prim, RULE1);
19 perm0 ←Pair(prim, RULE2);
20 perm1 ←Pair(primprd, RULE2);
21 vecupd0 ←Apply(vecim, perm0 + prim);
22 vecupd1 ←Apply(vecim, perm1 + primprd);
23 vecupd ←Combine(vecupd0, vecupd1);
24 seqext ←perm0 + prim + perm1 + primprd;

25 l scorenew ←LaneCmp(vecupd, vectrg);
26 if l scorenew > l scoreold then
27 seqsbuf.add(seq + seqext);

28 seqscand.append(seqsbuf);
29 seqsbuf.clear();
30 i←((++i)-1)%3+1;

31 seqssel ←PickLaneMatchedSeqs(seqscand);
32 seqsret ← InstSelector(seqssel,Type[0]);

33 Function InstSelector(Sequences seqscand,Type ty)
34 foreach Sequence seq in seqscand do
35 vecim ←Apply(vecinp, seq);
36 foreach Primitive prim in ty do
37 primprd ←Pair(prim, RULE1);
38 vecupd ←Apply(vecim, prim + primprd);
39 e score←ElemCmp(vecupd, vectrg);
40 if e score=2w then
41 seqsret.add(seq + prim + primprd);

42 return seqsret;

parts of the input data by using the aspas::sort. Second,
we use half of the threads to merge two neighboring sorted
parts into one by iteratively calling the aspas::merge until
there is only one thread left. In the evaluation, our multi-
threaded version refers to this design.

4. PERFORMANCE ANALYSIS
In our evaluation, we use the Integer for the one-word type

and the Double for the two-word type. Our experiments are
conducted on the Intel Xeon Phi 5110P coprocessor with
the codename Knight Corner, which has 60 cores running
on 1.05 GHz with 8 GB GDDR5 memory and includes 32
KB L1 cache and 512 KB L2 cache. The compiler is Intel
icpc 13.0.1, and the compiler options include -mmic and -O3.
We run all experiments using the native mode. All the data
are generated randomly ranging from 0 to the data size.

4.1 Performance of Different Sorting Networks
In the sort stage, ASPaS can accept any type of sorting

networks and generate corresponding aspas_sort function.
We use five sorting networks corresponding to five sorting
algorithms, including hibbard[11], odd-even [3], green[10],
bose-nelson[4], and bitonic[3]. Fig. 11a illustrates the per-
formance of the aspas_sort for five sorting networks over
an array with 100 million integers. The data labels also



show how many comparators and groups of comparators in
each sorting network. Green sort has the best performance
that stems from the less comparators and groups, i.e., (60,
10). Although bitonic sort follows a balanced way to com-
pare all elements in each step and is usually considered as
the candidate for better performance, it uses more compara-
tors, leading to the relatively weak performance for the sort
stage. In the remaining experiments, we choose green sort
as the sort algorithm for the Integer datatype. For the Dou-
ble datatype, we choose the second best, i.e., odd-even sort,
because green sort cannot take 8 elements as the input.

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

hibbard odd-even green bose-nelson bitonic

Ex
ec

ut
io

n 
Ti

m
e 

(s
) (65,15)

(63,10) (60,10)

(65,15)

(80,10)

(a) aspas_sort

 20

 22

 24

 26

 28

 30

 32

 34

 36

inconsistent consistent

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

(b) aspas_merge
Figure 11: Performance comparison of aspas_sort and aspas_merge
for different sorting and merging networks. In (a), the number of
comparators and groups are in parenthesis.

In the merge stage, ASPaS can solve two variants of bitonic
merging networks as shown in Eq.2 and Eq.3 of Sec.3.3. Fig-
ure 11b presents the performance comparison for these two
variants. The inconsistent merging can outperform the con-
sistent one by 28.6%. Although the consistent merging has
uniform data-reordering operations in each step as shown
in Fig. 8, the operations are not ISA-friendly and thus re-
quires a longer intrinsic sequence on Intel MIC. Based on
Eq.3, the consistent merging uses 5 times of the L32

2 data-
reordering operations, each of which needs 8 permute/shuffle
intrinsics on Intel MIC. In contrast, the inconsistent merg-
ing only uses L32

2 once and compensate it with much lighter
data-reordering operations, including I1⊗L32

16 ◦I2⊗L16
2 and

I2 ⊗ L16
8 ◦ I4 ⊗ L8

2, each of which can be implemented by
only 2 intrinsics on Intel MIC. Therefore, we will adopt the
inconsistent bitonic merge in the remaining experiments for
better performance.

4.2 Vectorization Efficiency
To compare with the auto-vectorized code, we implement

a serial sorting based on Alg. 1. Because the serial sorting
doesn’t store the partially sorted data in a scattered manner,
the aspas_transpose function has no serial counterpart. We
use the Intel compiler option -vec- to turn off the vectoriza-
tion for the serial version and denote it as “no-vec” in the
figures. On the other hand, we use the aggressive pragma
simd and option -O3 to guide the compiler to generate the
vectorized code and denote it as “Comp-vec”.

Fig. 12a shows the performance comparison for the sort
stage with the Integer datatype. Compared with the “no-
vec” version without the compiler auto-vectorization, the
code generated by ASPaS can get 7.7-fold speedup. Us-
ing the Green sorting network, 60 comparators are needed
to sort every 16 elements. As a result, for every 16*16 ele-
ments, the “no-vec” version needs 16∗60 = 960 comparators
to partially sort the data. In contrast, the code generated
by ASPaS only needs 60 vector comparators, and then uses
4 data-reordering operations (Eq.1) for each pair of vectors

in the aspas_transpose to transpose the data. In total, the
ASPaS code needs 60 + (16/2) ∗ 4 = 92 vector operations.
The theoretical speedup should be 960/92 = 10.4-fold. The
experiment shows we can achieve 74% of the theoretical
speedup for the sort stage. The figure also shows that the
ASPaS code can outperform the “auto-vec” version. Actu-
ally, the auto-vectorized code utilizes the gather/scatter in-
structions to get/put non-contiguous data from/to memory
on Intel MIC. However, it cannot mitigate the high latency
of non-contiguous memory access. ASPaS can still outper-
form it by 1.6-fold by using the load/store intrinsics on the
contiguous data and the shuffle/permute intrinsics for the
transpose in registers.

Fig. 12b presents the performance comparison for the merge
stage with the Integer datatype. Compared with the “no-
vec” version, the ASPaS code can achieve 5.7-fold speedup.
Since we use the bitonic merging to merge two sorted 16-
element vectors, 80 comparators are needed in the “no-vec”
version. In contrast, the ASPaS code only needs 5 compar-
isons with additional 5 data-reordering operations as shown
in Eq.2. This provides a theoretical upper bound of 80/10 =
8-fold speedup. The results show ASPaS can achieve 71%
of the theoretical speedup for the merge stage. Note that
the “auto-vec” version has the same performance with the
“no-vec” version, meaning that even with the most aggres-
sive vectorization pragma, the compiler fails to vectorize the
merge code due to the complex data dependency in the loop.

Similarly, we also show the results for the Double datatype
in Fig. 12c and Fig. 12d. The ASPaS sort and merge stages
can outperform their counterparts by 6.3-fold and 3.7-fold,
respectively.

4.3 Comparison to Sorting from Libraries
We first focus on the single threaded sorting. Since ASPaS

uses the similar scheme with the mergesort, we compare the
aspas::sort with two mergesort variants: top-down and
bottom-up. The top-down mergesort recursively splits the
input array until the split segments only have one element.
Subsequently, the segments are merged together. In con-
trast, the bottom-up variant directly works on the elements
and iteratively merge them into sorted segments. Fig. 13
illustrates the corresponding performance comparison. The
aspas::sort for Integer datatype can obtain 3.4-fold and 3-
fold speedup over the top-down and bottom-up mergesort,
respectively; while for Double datatype, the aspas::sort

can obtain 2.4-fold and 1.9-fold speedup instead.
Note that the speedups of aspas::sort over the top-down

and bottom-up mergesorts are smaller than what we have
reached in Sec.4.2 when compared to the sorting denoted as
“no-vec”. The “no-vec” sorting is a serial implementation of
Alg. 1 using essentially the scheme of a bottom-up merge-
sort. However, the scheme induces extra comparisons for
the ease of vectorization. When merging each pair of two
sorted segments, in the case of one-word elements, we fetch
w elements into a buffer from each segment and then merge
these 2w elements using the bitonic merging. After that, we
store the first half of merged 2w elements back to the result,
and load w elements from the segment with the smaller first
element into the buffer; and then, the next round of bitonic
merge will occur (ln.18-28 in Alg. 1). In contrast, the top-
down and bottom-up mergesort keep two pointers, each of
which points to the head of its sorted segment, and contin-
uously fetch the smaller element one by one. Therefore, the



 0

 2

 4

 6

 8

 10

0.1 1 10 100Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

No
rm

al
iz

ed
 to

 A
SP

aS

Data Size (million)

sort stage(aspas)

0.001 0.005 0.054 0.538

sort stage(comp-vec)

0.001 0.008 0.084 0.839

sort stage(no-vec)

0.004 0.041 0.413 4.126

(a) sort stage (int)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.1 1 10 100

Data Size (million)

merge stage(aspas)*

0.017 0.203 2.387 27.080

merge stage(comp-vec)*

0.101 1.190 13.820 153.971

merge stage(no-vec)

(b) merge stage (int)

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.1 1 10 100

Data Size (million)

sort stage(aspas)

0.001 0.007 0.066 0.660

sort stage(comp-vec)

0.001 0.013 0.125 1.247

sort stage(no-vec)

0.004 0.042 0.416 4.156

(c) sort stage (double)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.1 1 10 100

Data Size (million)

merge stage(aspas)*

0.036 0.416 4.917 55.041

merge stage(comp-vec)*

0.120
1.454 17.685 202.704

merge stage(no-vec)

(d) merge stage (double)
Figure 12: ASPaS codes vs. icpc optimized codes (The sorts asterisked are labeled with the execution time, the same below). In (b) and (d), the
lines of ”comp-vec” and ”no-vec” are overlapped.

comparisons in these two variants are considerably less than
what we use in Alg. 1. However, because of the more poten-
tial for the vectorization in the scheme of Alg. 1, we observe
better performance of aspas::sort over the top-down and
bottom-up mergesorts.

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.1 1 10 100Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

No
rm

al
iz

ed
 to

 A
SP

aS

Data Size (million)

aspas::sort

0.018 0.211 2.464 27.912

bottom-up_mergesort

0.057 0.655 7.578 84.213

top-down_mergesort

0.064 0.741 8.413 94.305

(a) vs. mergesorts (int)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

0.1 1 10 100

Data Size (million)

aspas::sort

0.038 0.434 5.103 57.211

bottom-up_mergesort

0.074 0.831 9.666 107.380

top-down_mergesort

0.090 1.044 12.065 136.005

(b) vs. mergesorts (double)
Figure 13: aspas::sort vs. top-down and bottom-up mergesort

For the single threaded aspas::sort, we also compare
it with other sorting tools from those widely-used libraries,
including the qsort and sort from STL, sort from Boost li-
brary, and the parallel_sort from Intel TBB (with a single
thread). Fig. 14a exhibits that aspas::sort for the Integer
datatype can achieve up to 4.3-fold speedup over the qsort,
and up to 2.4-fold speedup over others. For the Double
datatype in Fig. 14b, the aspas::sort can attain 2.6-fold
speedup over the qsort and 1.3-fold speedup over others.

 1

 2

 3

 4

 5

0.1 1 10 100Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

No
rm

al
iz

ed
 to

 A
SP

aS

Data Size (million)

aspas::sort*

0.018 0.211 2.464 27.912

tbb::parallel_sort
std::sort

boost::sort*

0.038 0.468 5.650 65.813

std::qsort*

0.081 0.949 10.780 121.051

(a) vs. sorting tools (int)

 0.5

 1

 1.5

 2

 2.5

 3

0.1 1 10 100

Data Size (million)

aspas::sort*

0.038 0.434 5.103 57.211

tbb::parallel_sort
std::sort

boost::sort*

0.044 0.550 6.254 72.373

std::qsort*

0.096 1.125 12.957 147.062

(b) vs. sorting tools (double)
Figure 14: aspas::sort vs. other sorting tools

Then, we compare our multi-threaded version described in
Sec.3.5 with the parallel_sort from Intel TBB. We choose
a larger dataset from 12.5 million to 200 million integer or
double elements. As shown in Fig. 15, our multi-threaded
version can outperform the parallel_sort by up to 2.1-
fold speedup for the Integer datatype and 1.4-fold speedup
for the Double datatype. It is worth mentioning that both
of these two parallel sort functions can achieve their best
performance while using 60 threads and each on a dedicated
core.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

12.5 25 50 100 200Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

No
rm

al
iz

ed
 to

 A
SP

aS

Data Size (million)

aspas::parallel_sort

0.575 0.923 1.641 2.869 5.321

tbb::parallel_sort

0.754 1.247
2.380

5.969
10.441

(a) vs. tbb::parallel sort (int)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

12.5 25 50 100 200

Data Size (million)

aspas::parallel_sort

0.956 1.681 2.966 5.484 10.621

tbb::parallel_sort

0.995
1.694

3.449
6.650

14.480

(b) vs. tbb::parallel sort (double)
Figure 15: aspas::parallel_sort vs. TBB’s parallel sort

4.4 Discussion
Merging Networks: Currently, ASPaS supports two

variants of bitonic merging networks, because their corre-
sponding permutation operators can symmetrically and com-
pletely utilize all elements in each input vector. In contrast,
other merging networks, e.g., odd-even network, cannot re-
arrange all elements and need more masks to hide irrelevant
elements in each concurrent step, leading to additional over-
head. On the other hand, once those additional data per-
mute and blend primitives for other merging networks are
selected out, ASPaS can add them into the primitive pool
and generate vectorized merge functions.

Portability: ASPaS can also generate parallel sorting
for x86-based multicore processors. We only need to mod-
ify one portion in the SIMD Code Generator, i.e., how to
translate the primitives to the read ISA intrinsics. For the
permute primitives, SSE, AVX, and AVX-2 of CPUs also
provide the lane-level and element-level permutation intrin-
sics, such as _mm256_shuffle and _mm256_2f128. Therefore,
these primitives can be also directly mapped to intrinsics. In
contrast, for the blend primitives, the behavior of mask on
CPUs is quite limited and most intrinsics have no masked
variants. Alternatively, we use other intrinsics to emulate
similar blend functionalities. For example, on AVX, we use
the _mm256_unpacklo and _mm256_unpackhi intrinsics to im-
plement the intra-lane blend primitives.

5. RELATED WORK
Many sorting algorithms have been modified and opti-

mized to utilize both of the multiple cores and the intra-core
parallelism on CPUs, GPU and MIC. Davidson et al.[6] de-
signs a parallel merge sort by increasing the register com-
munication on GPUs. Satish et al.[22, 23] compares and
analyzes the radix sort and merge sort on modern acceler-
ators, such as CPUs and GPUs. Chhugani et al.[5] show a
SIMD-friendly merge sorting algorithm by using the sorting
networks on multicore CPUs. AA-Sort in [13] is a new par-



allel sorting algorithm for utilizing the SIMD units of multi-
core CPUs. Their algorithm focuses on taking advantage of
SIMD instructions and eliminating the unaligned memory
access pattern. HykSort in [25] targets at distributed mem-
ory architectures, but on a single node, HykSort also uses
SIMD optimized merge sort. For the past work of using
the vector resources, developers have to explicitly use the
compiler intrinsics to handle the tricky data-reordering op-
erations required by the algorithm. Even with some SIMD-
friendly programming compilers (e.g. ISPC [18]), developers
still need to refer to the shuffle() functions and deal with
the corresponding permute parameters.

Some frameworks are proposed to automatically generate
application codes to utilize modern parallel architectures.
Mint and Physis in [26, 16] can generate effective GPU codes
for stencil computations. Benson et al.[2] provides a code
generation tool to automatically implement various matrix
multiplication algorithms. To facilitate the utilization of the
intra-core resources, Huo et al.[12] presents a system with
runtime SIMD parallelization with override operators and
functions. Operator Language described in [9] is a frame-
work to generate efficient vector load and shuffle instructions
to achieve desired data-reordering pattern based on a rewrit-
ing system and a search mechanism. McFarlin et al.[17]
shows another superoptimizer to conduct a guided search of
the shortest sequence of instructions over a large candidate
pool. Compared to the past work, the ASPaS uses a pruned
ISA-fridendly primitive pools which are derived from the
symmetric data-reordering patterns in the parallel sorting.

6. CONCLUSION
In this paper, we propose the ASPaS framework to au-

tomatically generate vectorized sorting code for x-86 based
multicore and manycore processors. ASPaS can formalize
the sorting and merging networks to the sequences of com-
paring and reordering operators of DSL. Based on the char-
acteristics of such operators, ASPaS first creates an ISA-
friendly pool to contain the requisite data comparing and re-
ordering primitives, then builds those sequences with primi-
tives, and finally maps them to the real ISA intrinsics. With
ASPaS, we generate various parallel sorting codes on Intel
MIC. The performance evaluation illustrates our automati-
cally generated codes can outperform multiple sorting func-
tions from STL, Boost, and Intel TBB. In the future, we
will generate sorting codes for multicore architectures, and
look for a theoretical model to verify the generated codes
can obtain the best performance on the given ISA.

7. ACKNOWLEDGEMENT
This research was supported in part by NSF-BIGDATA

program via IIS-1247693. We acknowledge Advanced Re-
search Computing at Virginia Tech for the computational
resources.

8. REFERENCES
[1] S. W. Al-Haj Baddar and K. W. Batcher. Designing Sorting

Networks: A New Paradigm. Springer, 2011.

[2] Austin R. Benson and Grey Ballard. A Framework for Practical
Parallel Fast Matrix Multiplication. In Proc. of the ACM
SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP), 2015.

[3] K. E. Batcher. Sorting Networks and Their Applications. In
Proc. of ACM Spring Joint Computer Conf., 1968.

[4] R. C. Bose and R. J. Nelson. A Sorting Problem. J. ACM,
9(2), 1962.

[5] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,
Y.-K. Chen, A. Baransi, S. Kumar, and P. Dubey. Efficient
Implementation of Sorting on Multi-core SIMD CPU
Architecture. Proc. of the VLDB Endowment (PVLDB), 2008.

[6] A. Davidson, D. Tarjan, M. Garland, and J. Owens. Efficient
Parallel Merge Sort for Fixed and Variable Length Keys. In
Innovative Parallel Computing (InPar), 2012.

[7] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. Intel
AVX: New Frontiers in Performance Improvements and Energy
Efficiency. White Paper Intel Co, 2008.

[8] F. Franchetti, F. Mesmay, D. Mcfarlin, and M. Püschel.
Operator Language: A Program Generation Framework for
Fast Kernels. In Proc. of the IFIP TC 2 Working Conf. on
Domain-Specific Languages (DSL), 2009.

[9] F. Franchetti and M. Püschel. Generating SIMD Vectorized
Permutations. In Proc. of the Joint Eur. Conf. on Theory and
Practice of Software Int’l Conf. on Compiler Construction
(CC/ETAPS), 2008.

[10] M. W. Green. Some Improvements in Non-adaptive Sorting
Algorithms. In Proc. of the Annual Princeton Conf. on
Information Sciences and Systems, 1972.

[11] T. N. Hibbard. An empirical study of minimal storage sorting.
Commun. ACM, 6(5), 1963.

[12] X. Huo, B. Ren, and G. Agrawal. A Programming System for
Xeon Phis with Runtime SIMD Parallelization. In Proc. of the
ACM Int’l Conf. on Supercomputing (ICS), 2014.

[13] H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani.
AA-Sort: A New Parallel Sorting Algorithm for Multi-Core
SIMD Processors. In Proc. of the ACM Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), 2007.

[14] Intel. Intel Xeon Phi Coprocessor System Software Developers
Guide, 2012.
https://software.intel.com/sites/default/files/article/
334766/intel-xeon-phi-systemsoftwaredevelopersguide.pdf.

[15] S. Maleki, Y. Gao, M. Garzaran, T. Wong, and D. Padua. An
Evaluation of Vectorizing Compilers. In Proc. of the ACM Int’l
Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2011.

[16] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka. Physis:
An Implicitly Parallel Programming Model for Stencil
Computations on Large-scale GPU-accelerated Supercomputers.
In Proc. of the Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis (SC), 2011.

[17] D. S. McFarlin, V. Arbatov, F. Franchetti, and M. Püschel.
Automatic SIMD Vectorization of Fast Fourier Transforms for
the Larrabee and AVX Instruction Sets. In Proc. of the ACM
Int’l Conf. on Supercomputing (ICS), 2011.

[18] M. Pharr and W. Mark. ispc: A SPMD compiler for
high-performance CPU programming. In Innovative Parallel
Computing (InPar), 2012.

[19] P. Plauger, M. Lee, D. Musser, and A. A. Stepanov. C++
Standard Template Lib. Prentice Hall PTR, 1st edition, 2000.

[20] R. Rahman. Intel Xeon Phi Coprocessor Architecture and
Tools: The Guide for Application Developers. Apress, 1st
edition, 2013.

[21] J. Reinders. Intel Threading Building Blocks. O’Reilly &
Associates, Inc., 1st edition, 2007.

[22] N. Satish, M. Harris, and M. Garland. Designing Efficient
Sorting Algorithms for Manycore GPUs. In IEEE Int’l Symp.
on Parallel Distributed Processing (IPDPS), 2009.

[23] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee,
D. Kim, and P. Dubey. Fast sort on CPUs and GPUs: a case
for bandwidth oblivious SIMD sort. In Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data, 2010.

[24] B. Schling. The Boost C++ Libraries. XML Press, 2011.

[25] H. Sundar, D. Malhotra, and G. Biros. HykSort: A New
Variant of Hypercube Quicksort on Distributed Memory
Architectures. In Proc. of the ACM Int’l Conf. on
Supercomputing (ICS), 2013.

[26] D. Unat, X. Cai, and S. B. Baden. Mint: Realizing CUDA
Performance in 3D Stencil Methods with Annotated C. In
Proc. of the ACM Int’l Conf. on Supercomputing (ICS), 2011.

[27] M. Zuluaga, P. Milder, and M. Püschel. Computer Generation
of Streaming Sorting Networks. In Proc. of the ACM Design
Automation Conf. (DAC), 2012.

https://software.intel.com/sites/default/files/article/334766/intel-xeon-phi-systemsoftwaredevelopersguide.pdf
https://software.intel.com/sites/default/files/article/334766/intel-xeon-phi-systemsoftwaredevelopersguide.pdf

	Introduction
	Background
	Intel MIC Vector Architecture
	DSL for Data-Reordering Operations
	Sorting and Merging Network

	Methodology
	SIMD Sorter
	SIMD Transposer
	SIMD Merger
	SIMD Code Generator
	Primitive Pool Building
	Sequence Building

	Thread-level Parallelism

	Performance Analysis
	Performance of Different Sorting Networks
	Vectorization Efficiency
	Comparison to Sorting from Libraries
	Discussion

	Related Work
	Conclusion
	Acknowledgement
	References

