
AAlign: A SIMD Framework for Pairwise Sequence Alignment
on x86-based Multi- and Many-core Processors

Kaixi Hou, Hao Wang, and Wu-chun Feng
Department of Computer Science

Virginia Tech, Blacksburg, USA
{kaixihou, hwang121, wfeng}@vt.edu

Abstract—The pairwise sequence alignment algorithms, e.g.,
Smith-Waterman and Needleman-Wunsch, with adjustable gap
penalty systems are widely used in bioinformatics. The strong
data dependencies in these algorithms prevent them from
exploiting the auto-vectorization techniques in compilers. When
programmers manually vectorize them on multi- and many-
core processors, two vectorizing strategies are usually con-
sidered, both of which initially ignore data dependencies and
then appropriately correct in a subsequent stage: (1) iterate,
which vectorizes and then compensates the scoring results with
multiple rounds of corrections and (2) scan, which vectorizes
and then corrects the scoring results primarily via one round of
parallel scan. However, manually writing such vectorizing code
efficiently is non-trivial, even for experts, and the code may not
be portable across ISAs. In addition, even highly vectorized
and optimized codes may not achieve optimal performance
because selecting the best vectorizing strategy depends on the
algorithms, configurations (gap systems), and input sequences.

Therefore, we propose a framework AAlign to automatically
vectorize pairwise sequence alignment algorithms across ISAs.
AAlign ingests a sequential code (which follows our generalized
paradigm for pairwise sequence alignment) and automatically
generates efficient vector code for iterate and scan. To reap
the benefits of both vectorization strategies, we propose a
hybrid mechanism where AAlign automatically selects the best
vectorizing strategy at runtime no matter which algorithms,
configurations, and input sequences are specified. On Intel
Haswell and MIC, the generated codes for Smith-Waterman
and Needleman-Wunsch achieve up to a 26-fold speedup
over their sequential counterparts. Compared to the highly
optimized and multi-threaded sequence alignment tools, e.g.,
SWPS3 and SWAPHI, our codes can deliver up to 2.5-fold and
1.6-fold speedups, respectively.

Keywords-vector; SIMD; alignment; code generation;

I. INTRODUCTION

The pairwise sequence alignment algorithms, e.g., Smith-
Waterman (SW) [1] and Needleman-Wunsch (NW) [2], are
important computing kernels in bioinformatics applications
([3], [4], [5]) to quantify the similarity between pairs of
DNA, RNA, or protein sequences. This similarity is captured
by a matching score, which indicates the minimum number
of deletion, insertion, or substitution operations with penalty
or award values to transform one sequence to another. To
boost their performance on modern multi- and many-core
processors, it is crucial to utilize the vector processing units
(VPU), which essentially conduct the single instruction,

multiple data (SIMD) operations. However, the strong data
dependencies among neighboring cells prevent such algo-
rithms from taking advantage of compiler auto-vectorization.
Thus, programmers need to explicitly vectorize their code
or even resort to writing assembly code to attain better
performance. 5codes.

The manual vectorization of such algorithms often relies
on two strategies: (1) iterate [6], [4], [5]: partially ignore
the dependencies in one direction, vectorize computations,
and may compensate the results by using multiple rounds of
corrections; (2) scan [7]: completely ignore the dependencies
in one direction, vectorize computations, and recalculate the
results with “weighted scan” operations and another round of
correction. Either strategy has its own benefits depending on
selected algorithms (e.g., SW or NW), gap systems (linear
or affine), and input sequences.

There are two main challenges facing programmers. First,
the manual vectorization requires huge coding efforts to
handle the idiosyncratic vector instructions. For applications
having complex data dependencies, the expert knowledge of
vector instruction sets and proficient skills to organize vector
instructions is necessary to achieve desired functionality.
Moreover, current vector ISAs evolve very fast and some
versions are not backwards compatible [8]. Porting existing
vectorized codes to another platforms becomes a boring and
tedious task. Second, even the highly optimized vector codes
may not get the optimal performance at the application
level. For the pairwise sequence alignment, the combina-
tions of algorithms, vectorization strategies, configurations
(gap penalty systems), and input sequences at runtime may
lead to significantly variable performance. It increases the
complexity to optimize applications on modern multi- and
many-core processors. Therefore, looking for a way to get
around these obstacles is of great importance.

In this paper, we propose a framework AAlign to auto-
matically vectorize pairwise sequence alignment algorithms
across ISAs. Our framework takes sequential algorithms,
which need to follow our generalized paradigm for the
pairwise sequence alignment, as the input and generate
vectorized computing kernels as the output by using the for-
malized vector code constructs and linking to the platform-
specific vector primitives. Two vectorizing strategies are

formalized as the striped-iterate and striped-scan in our
framework. In addition, a hybrid mechanism is introduced
to take advantage of both of them. That means the hybrid
mechanism can automatically switch between the striped-
iterate and striped-scan based on the context of runtime, and
then provide better performance than the basic mechanisms.

The major contributions of our work include the fol-
lowing. First, we propose the AAlign framework that can
automatically generate parallel codes for pairwise sequence
alignment with combinations of algorithms, vectorizing
strategies, and configurations. Second, we identify the ex-
isting vectorizing strategies cannot always provide the opti-
mal performance even the codes are highly vectorized and
optimized. As a result, we design a hybrid mechanism to
take advantages of two vectorizing strategies. Third, using
AAlign, we generate various parallel codes for the combi-
nations of algorithms (SW and NW), vectorizing strategies
(striped-iterate, striped-scan, and hybrid), and configurations
(linear and affine gap penalty systems) on two x86-based
platforms, i.e., the Advanced Vector eXtension (AVX2)
supported multicore and the Initial Many Core Instructions
(IMCI) supported manycore.

We conduct a serial of evaluations of the generated vector
codes. Compared to the optimized sequential codes on
Haswell CPU, our codes using the striped-scan can deliver
4 to 6.2-fold speedups, while switching to the striped-scan,
our codes can provide 4.7 to 10-fold speedups. The vector
codes continue showing performance advantages on Intel
MIC, and can achieve 9.1 to 16-fold speedups using striped-
scan and 9.5 to 25.9-fold speedups using striped-iterate over
the optimized sequential counterparts, respectively. We also
compare the proposed hybrid mechanism with the striped-
iterate and striped-scan mechanisms, and demonstrate the
hybrid mechanism can achieve better performance on both
platforms. After wrapping our vector codes with the multi-
threading, we compare our codes using the hybrid vectoring
strategy with the highly optimized sequence alignment tools
SWPS3 [4] on CPU and SWAPHI [5] on MIC. While
aligning the given query sequences to a whole database, our
codes can achieve up to 2.5-fold speedup over SWPS3 on
CPU and 1.6-fold speedup over SWAPHI on MIC.

II. BACKGROUND

This section describes a brief overview of (1) the vector
ISAs of x86-based processors of both CPU and MIC and
(2) the pairwise sequence alignment algorithms.

A. Vector ISA

Modern x86-based processors (e.g., CPU and MIC) are
equipped with vector processing units (VPUs). These func-
tion units can carry out a single operation over a pack
of data simultaneously. Alongside, the vector ISA provides
an abundant set of instructions and continues evolving and
expanding for more functionalities, such as the Advanced

Vector Extensions (AVX), the Initial Many Core Instructions
(IMCI), and the incoming AVX-512 [9]. Meanwhile, the
vector width has also extended from 128 bits (4 floats) to
256 bits (8 floats) to current 512 bits (16 floats), improving
the throughput of systems and offering potential benefits for
applications. In this paper, we focus on AVX2 and IMCI.

AVX2 Instructions: The width of AVX2 registers is 256
bits consisting of two 128-bit lanes. The ISA is available
since the Haswell architecture. AVX2 expands most vector
integer SSE and AVX instructions to 256 bits and supports
variable-length integers. Besides, AVX2 introduces gather,
cross-lane permute and per-element shift instructions.

IMCI Instructions: The width of IMCI registers is 512
bits in four 128-bit lanes. IMCI works on the Knights Corner
MIC architecture. Although IMCI has further enriched the
functionalities, e.g., scatter, gather, reduce, etc., it does not
support previous vector ISAs, e.g., SSE and AVX. Because
IMCI doesn’t support the 16 or 8-bit integers, we only
consider 32-bit integers on IMCI in this paper.

B. Pairwise Sequence Alignment Algorithms

The pairwise sequence alignment is to quantify the best-
matching score between piecewise or whole region of two
input sequences of DNA, RNA, or protein. Specifically, the
alignment uses the edit distance to describe how to trans-
form one sequence into another by using minimum number
of predefined operations, including insertion, deletion, and
substitution, with associate penalty or award. One common
technique is the dynamic programming using tabular com-
putations shown in Fig. 1. If the input sequences are query
Qm with m characters and subject Sn with n characters, we
need a m ∗ n table T , and every cell Ti,j in the table stores
the optimal score of matching the substring Qi and Sj . To
assist in the computation, we define three additional tables:
Li,j , Ui,j , Di,j denoting the optimal scores of matching with
substring Qi and Sj but ending with the insertion, deletion,
and substitution respectively. We can derive:

Ti,j = max(Li,j , Ui,j , Di,j) (1)

Fig. 1 also shows the data dependencies. Visually, Li,j , Ui,j ,
Di,j rely on its left, upper, diagonal neighbors. Although
the algorithm takes O(m∗n) time and space complexity, by
using the double-buffering technique shown in the two solid
rectangles of the figure, we lower the space complexity to
O(m) assuming the computation goes along the Qm.

There are two major classes of pairwise sequence align-
ment algorithms, i.e. the local and global alignment. For the
global alignment, the Needleman-Wunsch algorithm [2] can
find the best-matching score regarding the entire sequences.
For the local alignment, the Smith-Waterman algorithm [1]
can quantify the optimal score regarding the partial regions.
Both algorithms have multiple variants by using linear or
affine gap penalties. We will show the generalized paradigm
for the pairwise sequence alignment algorithms in Sec. IV.

Di-1,j-1Ui-1,j-1

Li-1,j-1 Ti-1,j-1

Di,j-1 Ui,j-1

Li,j-1 Ti,j-1

Di-1,j Ui-1,j

Li-1,j Ti-1,j

Di,j Ui,j

Li,j Ti,j

Vertical Dep.Diagonal Dep.

Horizontal Dep.

Q
u

e
ry

Q
m

Subject Sn
i = 0

j = 0

double -buffering(a) (b)

Figure 1: Data dependencies in the alignment algorithms using dynamic programming

III. CHALLENGES

Alg. 1 shows the sequential code of SW with the affine
gap penalty system. Though writing the sequential code is
relatively simple, vectorizing such an algorithm is nontrivial
due to the strong data dependencies among the neighbors
shown in Fig. 1.

Algorithm 1: Sequential Smith-Waterman following the paradigm (Sec. IV)

/* GAPOPEN and GAPEXT are constants; BLOSUM62 is a
substitution matrix; ctoi is a user-defined function
to map given character to the index number in the
substitution matrix */

1 for i←0; i < n+1; i++ do
2 T0,i = U0,i = L0,i = 0;
3 for j ←0; j < m+1; j++ do
4 Tj,0 = Uj,0 = Lj,0 = 0;
5 for i←1; i < n+1; i++ do
6 for j ←1; j < m+1; j++ do
7 Li,j = max(Li−1,j + GAPEXT, Ti−1,j + GAPOPEN);
8 Ui,j = max(Ui,j−1 + GAPEXT, Ti,j−1 + GAPOPEN);
9 Di,j = Ti−1,j−1 + BLOSUM62ctoi(Qj−1),ctoi(Si−1);

10 Ti,j = max(0, Li,j ,Ui,j ,Di,j);
11 // resultant score is the maximum value in T

We already introduce the two vectoring strategies to re-
construct the data dependencies in Sec. I. We describe the
major differences in this section: (1) iterate [6], partially
ignores the vertical dependencies in Fig. 1, and processes the
vertical cells simultaneously along the column. This round
of computations only ensures a part of the results are correct,
leading to potentially multiple rounds of corrections. (2)
scan [7], originally designed for GPU, completely ignores
the vertical dependencies at the beginning. The vertical cells
can be processed in a SIMD way, giving us the preliminary
results. After that, a parallel max-scan operation will be
conducted on the preliminary results, and the scan results
will be applied to correct the results in another round
of computation. The fundamental difference in these two
strategies is in the correction: iterate may not need any
correction, or finish the correction with one or several steps
of re-computations once reach convergence, while scan will
always take two rounds of re-computations, i.e., the scan on
all vertical cells and then a round of much lighter correction.

Comparing the vector codes in Alg. 2 and Alg. 31 to

1Although we use our formalized codes as the examples, the hand-written
vector codes presented in previous research, e.g., [6], are similar to ours.

the sequential code in Alg. 1, we can find writing vector
codes involves expert knowledge of the algorithms and
the platform-specific ISAs, even though the detailed low-
level intrinsics are hidden by our formalized codes. As a
result, the first question we want to answer is whether we
can automatically vectorize these types of applications with
multiple combinations of parameters.

 0

 5

 10

 15

 20

 25

 30

 35

SW NW affine linear input1 input2

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

scan mtd
iterate mtd

Diff Inputs
+ SW

+ Affine Gap

Diff Gap Systems
+ SW

+ Same Inputs

Diff Algorithms
+ Affine Gap

+ Same Inputs

Figure 2: Example of comparing two vectorizing strategies under various conditions
on MIC (the cases are from Sec. VI)

On the other hand, the differences in the two strategies
indicate they would have their own benefits. Fig. 2 takes
some evaluation numbers from Sec. VI to show our another
motivation: because the algorithms, configurations, and input
sequences at runtime can affect the performance and no
one combination can always provide best performance, the
second question in this paper is whether we can design a
mechanism to automatically select the favorable vectoriza-
tion strategies at runtime.

IV. GENERALIZED PAIRWISE ALIGNMENT PARADIGM

In the section, we present our generalized paradigm for
the pairwise sequence alignment algorithms with adjustable
gap penalties. Any sequential codes following the paradigm
can be processed by our framework to generate real vector
codes.

Ti,j = max

0

max06l<j(Ti,l + θi,l +
∑j

k=l+1 βi,k)

max06l<i(Tl,j + θ′l,j +
∑j

k=l+1 βk,j)

Ti−1,j−1 + γi,j

(2)

In the paradigm in Eq.(2), the T is the working-set table and
Ti,j stores the suboptimal score. 0 is optional and used only
in local alignment. θi,l (θ′l,j) is the gap penalty of initiating
a gap at the position l of Qm (Sn). βi,k (β′k,j) is the gap
penalty of continuing a gap at the position k of Qm (Sn).
γi,j is the substitution score of matching base j of Qm and
base i of Sn. In bioinformatics, the substitution scores are
usually from the scoring matrix, such as BLOSUM62. Both
θi,l (θ′l,j) and βi,k (β′k,j) can be configured to be either
constants or variables. By using the dynamic programming,
one can use three assistant symbols, i.e., Ui,j , Li,j , Di,j , to
represent the influence from Ti,j’s upper, left, and diagonal
neighbors. Therefore, the paradigm is equivalent to Eq.(3-6).

Ti,j = max

0

Ui,j

Li,j

Di,j

(3)

Ui,j = max

{
Ui,j−1 + βi,j

Ti,j−1 + θi,j−1 + βi,j
(4)

Li,j = max

{
Li−1,j + β′i,j
Ti−1,j + θ′i−1,j + β′i,j

(5)

Di,j = Ti−1,j−1 + γi,j (6)

Now, we can fit the real algorithms into the paradigm.
Smith-Waterman: Because it is a local alignment algo-

rithm, we need to keep 0 as the initial. If we simply use the
linear gap penalty, the θi,l (θ′l,j) is set to 0 and βi,k (β′k,j) is
the gap penalty value. If we use affine gap penalty, the θi,l
(θ′l,j) is the gap open penalty value and βi,k (β′k,j) is the gap
extension penalty value. If these parameters are variables,
other gap penalty systems can be used. Needleman-Wunsch:
Because it is a global alignment algorithm, we don’t need the
0. The configuration of other parameters is similar with the
SW. Actually, ln. 7 to ln. 10 in Alg. 1 follow the paradigm
with necessary initialization codes in ln. 1 to ln. 4.

V. AALIGN FRAMEWORK

The AAlign framework adopts the “striped-iterate” and
“striped-scan” as the basic vectorization strategies. We make
a few modifications to the original methods derived from [6]
and [7] to fit our framework. Fig. 3 illustrates the overview
of AAlign. The framework can accept any kind of sequential
codes following our generalized paradigm in Sec. IV. After
analyzing the Abstract Syntax Tree (AST) of the sequential
code, AAlign can obtain the required information, such as
the type of the given alignment algorithm and the selected
gap penalty system. Then, AAlign will input the information
to the “vec code constructs” which are formalized according
to the aforementioned vectorizing strategies. Finally, the
framework can generate real codes by using proper vector
modules. These modules include primitive vector operations
whose implementation is ISA-specific.

seq code

vec code

constructs

Clang

framework

Traverse

Identify

Build vec code

Use hybrid method

AST
(seq code) AST (vec code constructs)

vec code
mod

mod

ISA-specific
modules

Figure 3: High-level overview of the structure of AAlign framework

A. Vector Code Constructs

In this section, we will first describe the SIMD-friendly
data layout used in AAlign. Based on it, we will present
two vector code constructs containing the vector modules
(Sec. V-C) and the configurable parameters (Sec. V-D).

Striped layout: AAlign always conducts the tabular com-
putation along the query sequence Qm. After loading the
data from the same column in Fig. 1 to the buffer, AAlign
transforms the data layout to the striped format, which is

a b c d eA B C D E

a b c d e A B C D E

v1 v2 v5v3 v4

Original:

Striped:

i

i

Figure 4: The original and SIMD-friendly striped layouts

SIMD-friendly because the data dependency among adjacent
elements are eliminated. Fig. 4 shows the data layouts
before and after the striped transformation. In the original
buffer, we have 20 elements from the same column of the
tabular; and each element depends on its preceding neighbor
(the vertical direction in Fig. 1). If we load the elements
directly into five vectors, the data dependencies will hinder
efficient vector operations. By rearranging the buffer into
the striped format, dependent elements are distributed to
different vectors, making the interaction happening among
vectors rather than within vectors.

Algorithm 2: Vector code constructs for striped-iterate

/* m is the aligned length of Q, n is the length of S,
k is number of vectors in Q, equal to m/veclen. If
the linear gap penalty system is taken, the AAlign
will ignore the asterisked statements */

1 vec vTdia, vTleft, vTup, vT;
2 vec vTmax = broadcast(INT MIN);
3 vec vGapTleft = broadcast(GAP LEFT);
4 vec vGapTup = broadcast(GAP UP);
5 *vec vL, vU;
6 *vec vGapL = broadcast(GAP LEFT EXT);
7 *vec vGapU = broadcast(GAP UP EXT);
8 *vec vZero = broadcast(0);
9 for i←0; i < n; i++ do

10 vTdia = rshift x fill(arrT1 + (k − 1) ∗ veclen, 1, INIT T);
11 vTup = set vector(m, INIT T,GAP UP);
12 vTup = add vector(vTup, vGapTup);
13 *vU = set vector(m, INIT U,GAP UP EXT);
14 *vU = add vector(vU, vGapU);
15 *vU = max vector(vU, vTup);
16 for j ←0; j < k; j++ do
17 vTdia = add array(prof + ctoi(Si) ∗m+ j ∗ veclen, vTdia);
18 vTleft = add array(arrT1 + j ∗ veclen, vGapTleft);
19 *vL = add array(arrL + j ∗ veclen, vGapL);
20 *vL = max vector(vL, vTleft);
21 *store vector(arrL + j ∗ veclen, vL);
22 vT = max vector(vTdia,MAX OPRD);
23 store vector(arrT2 + j ∗ veclen, vT);
24 vTmax = max vector(vTmax, vT);
25 vTdia = load vector(arrT1 + j ∗ veclen);
26 vTup = vT;
27 vTup = add array(vTup + vGapTup);
28 *vU = add vector(vU + vGapU);
29 *vU = max vector(vTup, vU);
30 REC UP = rshift x fill(REC UP, 1,REC FILL);
31 int j = 0;
32 vT = load vector(arrT2 + j ∗ veclen);
33 while influence test(REC UP,REC CRT) do
34 vT = max vector(vT,REC UP);
35 store vector(arrT2 + j ∗ veclen, vT);
36 vTmax = max vector(vTmax, vT);
37 REC UP = add vector(REC UP,REC UP GAP);
38 if ++j >= k then
39 REC UP = rshift x fill(REC UP, 1,REC FILL);
40 j=0;
41 vT = load vector(arrT2 + j ∗ veclen);
42 swap(arrT1, arrT2);

Striped-iterate: This vectorizing strategy is based on [6].
The modified vector code constructs are shown in Alg. 2.

We use two m-element buffers arrT1 and arrT2 to store the
best-matching scores. Additionally, a m-element buffer arrL
stores the scores denoting best-matching with ending gap in
Q. The scores denoting best-matching with ending gap in
S are stored in the vector register Tup or vU if affine gap
penalty system is taken. In this strategy, we first partially
ignore the data dependencies within the buffer (along the
Q) and use the predefined vectors (ln. 11 and ln. 13) to set
lower bounds. In the predefined vectors (Tup or vU), only
first elements come from the real initialization expressions
(INIT T and INIT U), while other elements are derived
from them and corresponding gap penalties (GAP UP and
GAP UP EXT). As a result, the first round of preliminary
computations (ln. 16 to ln. 29) only ensures the first elements
in each vector are correct (a-e cells in Fig. 4).

We need to correct the results if the updated predefined
vectors affect the results (ln. 33). The re-computations of
correction (ln. 34 to ln. 41) will take at most veclen-1 times
to ensure all the other elements in the vectors are correct.
After that, we continue the for loop (ln. 9) to process the
next character in S, which corresponds to another column
in Fig. 1.

Algorithm 3: Vector code constructs for striped-scan

// m is the aligned length of Q, n is the length of S,
k is number of vectors in Q, equal to m/veclen. If
the linear gap penalty system is taken, the AAlign
will ignore the asterisked statements

1 vec vTdia, vTleft, vTup, vT;
2 vec vTmax = broadcast(INT MIN);
3 vec vGapTleft = broadcast(GAP LEFT);
4 *vec vL;
5 *vec vGapL = broadcast(GAP LEFT EXT);
6 *vec vZero = broadcast(0);
7 for i←0; i < n; i++ do
8 vTdia = rshift x fill(arrT1 + (k − 1) ∗ veclen, 1, INIT T);
9 for j ←0; j < k; j++ do

10 vTdia = add array(prof + ctoi(Si) ∗m+ j ∗ veclen, vTdia);
11 vTleft = add array(arrT1 + j ∗ veclen, vGapTleft);
12 *vL = add array(arrL + j ∗ veclen, vGapL);
13 *vL = max vector(vL, vTleft);
14 *store vector(arrL + j ∗ veclen, vL);
15 vT = max vector(vTdia,MAX OPRD);
16 store vector(arrT2 + j ∗ veclen, vT);
17 vTdia = load vector(arrT1 + j ∗ veclen);
18 wgt max scan(arrT2, arrScan,m, INIT T,GAP UP EXT,GAP UP);

19 for j ←0; j < k; j++ do
20 vTup = load vector(arrScan + j ∗ veclen);
21 vT = load vector(arrT2 + j ∗ veclen);
22 vT = max vector(vT, vTup);
23 vTmax = max vector(vTmax, vT);
24 store vector(arrT2 + j ∗ veclen, vT);
25 swap(arrT1, arrT2);

Striped-scan: The scan strategy in AAlign is based on
the GPU method [7]. We modify it by using the striped
format on x86-based platforms, shown in Alg. 3. Similar
with the striped-iterate, we define three m-element buffers
arrT1, arrT2, and arrL. In addition, an extra buffer arrscan
is used to store the scan results. In this strategy, we first
completely ignore the data dependencies within the buffer
(along the Q) to do the tentative computation (ln. 9 to ln. 17).

Unlike the striped-iterate, we conduct “weighted” scan over
the tentative results arrT2 and store the scan results to arrscan
(ln. 18). Finally, we use the values in arrscan to correct the
results (ln. 19 to ln. 24). After that, we continue to process
the next character in S (ln. 7).

B. Hybrid Method

As we discussed in Sec. III, no one combination of
the algorithms (SW or NW), vectoring strategies (iterate
or scan), gap penalty systems (linear or affine) can al-
ways provide optimal performance for different pairs of
input sequences. Before we provide a better solution, we
investigate the reason under what circumstances a specific
combination can win. We test various query sequences,
whose lengths range from 100 to 36k characters. We fix the
algorithm to SW and the gap penalty system to the affine
gap, and change the vectoring strategies. We find that the
striped-scan strategy performs better when the number of
re-computations in striped-iterate is around 1.5 times more
on MIC, and 2.5 times on Haswell (For other combinations
of algorithms and gap systems, the ratios are similar due to
the similar computational pattern and workloads). Generally,
if the best-matching score before the re-computations is
high, meaning that the two input sequences may be close to
each other, the striped-iterate has to carefully and iteratively
check each position with more re-computation steps in order
to eliminate the false negative; while in striped-scan, no
matter what the matching scores are, the fix number of
re-computations are needed. Paradoxically, we cannot rely
on this observation to determine which strategy should be
taken, because unless we finish the alignment algorithm and
get the real matching scores, we don’t know how similar
or dissimilar in the input pair of sequences, or even in a
specific rang of pairs.

In the paper, we propose an input-agnostic hybrid method
that can automatically select the efficient vectorizing strategy
at the runtime. Our hybrid method starts from the striped-
iterate strategy, in which we maintain a counter to record
the number of re-computations. When the counter exceeds
the configured threshold, the method will switch to the
striped-scan. For example, based on the experiments for the
combination of SW with the affine gap presented in the
previous paragraph, we set the threshold to be 2 for MIC and
3 for Haswell CPU. However, switching back from striped-
scan to striped-iterate is nontrivial, because we don’t know
the amount of re-computations for striped-iterate when the
algorithm is working in the striped-scan mode. Alternatively,
we design a solution to “probe” the re-computation overhead
at a configurable interval stride. That way, after processing
stride characters in the subject sequence using the striped-
scan, we tentatively switch back to the striped-iterate and
rely on the counter to determine the next switch. Once
the counter is above the threshold, we switch back again
to the striped-scan for another round of processing stride

characters. Otherwise, our method will stay in the striped-
iterate mode and continue checking the counter.

Fig. 5 shows an example of the hybrid method. If we only
rely on the striped-iterate method, the re-computations in the
middle part of the subject sequence will kill the performance
due to the overhead of re-computations. In contrast, if we
only use the striped-scan, the benefits of the head and tail
parts in the striped-iterate will be wasted. Our hybrid method
uses the counter to find the amount of re-computations is
above the threshold around processing the 800-th character,
and thus switch to striped-scan method. Then, it will probe
the counter periodically by going back to the iterate method
until the counter drops below the threshold or the end of the
sequence S is achieved.

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000

#
 o

f r
e-

co
m

pu
ta

tio
ns

Processing the i-th character in the subject S

aalign-iterate
aalign-scan

aalign-hybrid
stride

(switch)

(noop)

(noop)

(switch)

Figure 5: The mechanism of the hybrid method

One may wonder why the hybrid mechanism starts from
the striped-iterate, conservatively switches from striped-
iterate to striped-scan only when the counter exceeds the
threshold, and aggressively switches back by using the
proactive probe. The reason is related with the characteristics
of sequence search: although the sequence alignment is
designed to find similar sequences of databases for the input
query, it cannot identify too many similar sequences because
statistically most of the sequences of databases are dissimilar
with a specific input. Even if a sequence is determined
similar to the input, their exactly match regions are few.
Considering the much faster convergence speed of striped-
iterate for dissimilar pairs, we prefer it, and conservatively
switch to striped-scan only when we find current aligned
regions are highly matched.

C. Vector Modules

We’ve already seen the usage of the vector modules in
Alg. 2 and Alg. 3. These vector modules are designed to
express the required primitive vector operations in our vector
code constructs and hide the ISA-specific vector instruction
details. Therefore, when the platform changes, AAlign only
needs to re-link the vector code to the proper set of vector
modules. Tab.I defines the vector primitive modules. The
first group of modules are designed to conduct basic vector
operations over given arrays or vectors. Specifically, they
are wrapper functions of the directly-mapped ISA intrinsics.
As a contrast, the second group of modules carry out an

application-specific operations, customized to our formal-
ized vector code constructs.

Table I: The vector modules in AAlign

Module Name Description
Basic Vector Operation API

load vector(void *ad); Load/store a vector from/to the memory address
ad, which can be char*, short*, or int*
(the same below)

store vector(void *ad, vec v);

add vector(vec va, vec v); Add a vector of va or from the memory address
ad by vector v,add array(void *ad, vec v);

max vector(vec v1, ...); Take any count of input vectors, and return
the vector with largest integers in each aligned
position

App-specific Vector Operation API
set vector(int m, int i, int g); Init a new vector, in which i is the default Ti,j

or Fi,j value when j=0, g is their correspond-
ing gap βi,j or θi,j

rshift x fill(vec v, int n, ...); Right shift the vector of v or loaded from ad by
n of positions and fill the gaps with specified
values

rshift x fill(void *ad, int n,
...);
influence test(vec va, vec vb); Check if vector va can affect the values in vb
wgt max scan(void *in, void
*out, int m, int i, int g, int G);

“weighted” max-scan over the values in in of
the striped format, store the results to out. i is
the default Ti,j value when j=0, g, G are the
corresponding βi,j , θi,j

set vector: is to set the lower-bound vector in the striped-
iterate strategy. Fig. 6 shows that AAlign will set the first
value of the lower-bound vector to be the initial value i
Then, the lower-bound values of the rest are set to be
i + l ∗ k ∗ g, where l is the element’s index, k is the
total number of vectors, and g is the associate gap penalty.
The implementation of the module is to use the proper
_mm256/512_set instrinsics.

i

a

b

c

d

e

A

B

C

D

E

v1

v2

v3

v4

v5

set_vector(20,i,g)

e Ex

rshift_x_fill (v5,1,x)
v0

influence_test (
v0-vGap𝛽, v1-vGap𝜃);a

b

c

d

e

A

B

C

D

E

v1

v2

v3

v4

v5

e E

1
st

ro
u

n
d

 o
f

co
m

p
u

ta
ti

o
n

 c
an

 o
n

ly

en
su

re
 t

h
e

1
st

co
lu

m
n

 is
 c

o
rr

ec
t

2nd round of re-
computation might be

avoided depending on the
influence_test result

lower-
bound

Figure 6: Vector modules used in the striped-iterate

rshift x fill: is to right shift the vector elements with
the value x filled. AAlign uses this module to adjust the
data dependencies between vectors. As shown in Fig. 6, the
1st round of computation can ensure the values in the first
column (a-e cells) are correct, since they are calculated based
on the real initial value i. Therefore, the test of the need
for correction is required. Before that, we observe that in
the 2nd round, the current “true” value e would affect A
according to the original layout in Fig. 4. As a result, we
shift the vector v5 to right by 1 position and fill the gap
using a small enough number x to make sure there is no
influence caused by it.

The implementation is essentially a combination of data-
reordering operations. However, the selection of instructions
is quite different because of different ISAs and desired data

types. Fig. 7 shows how to achieve the same functionality
with different intrinsics. Because the shortest integer data
type supported by IMCI is 32-bit, we only show IMCI with
32-bit int, which uses a combination of the cross 128-bit
lane permutevar and swizzle intrinsics. As a contrast, we
directly insert the value x after the permutevar completes
on AVX2 with 32-bit int. If we work on the 16-bit values,
there is no equivalent permutevar intrinsics so that we
use shufflehi/hi, permute8x32 and blend intrinsics for this
functionality, followed by the insert.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

x x x x x x x x x x x x x x xx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

1 2 3 4 5 6 7 8

1 2 3 4 5 6 78

1 2 3 4 5 6 7x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 8 5 6 7 12 9 10 11 16 13 14 154

1 2 3 8 5 6 7 12 9 10 1116 13 14 15 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1516

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15x

__m512_permutevar_epi32

__m512_mask_swizzle_epi32

__m256_permutevar_epi32

__m256_insert_epi32

__m256_shufflehi/lo_epi16

__m256_permutevar8x32_epi16

__m256_blend_epi16

__m256_insert_epi16

rshift_x_fill (IMCI 32-bit int)

rshift_x_fill (AVX2 32-bit int)

rshift_x_fill (AVX2 16-bit int)

__m512_set1_epi32

Figure 7: Example of chosen ISA intrinsics for rshift x fill (only blend operations are
shown with arrows)

influence test: is to check if an extra re-computation of
correction is necessary in the striped-iterate method. Specif-
ically, the module is a vector comparison. The comparison
results containing 1s mean the 1st operand will affect the
2nd one. In IMCI, the results are stored in a 16-bit mask
and then we simply check if this value is larger than 0 or not.
However, in AVX2, the “mask” is stored in a 256-bit vector,
and there is no single instruction to peek how many set bits
inside. Our solution is to split the vector to two 128-bit SSE
vectors and use the intrinsic _mm_test_all_zeros to
detect if there are set bits.

wgt max scan: is to implement the “weighted” scan along
the buffer holding the tentative results (denoted as T̃i,j
and stored in arrT1 from ln. 18 of Alg. 3). Mathemati-
cally, we perform the calculation of max06l<j(T̃i,l+ θi,l+∑j
k=l+1 βi,k). For simplicity, let’s suppose θi,l, βi,k are two

constants θ and β and only use 8 characters as the example
for the striped sequence shown in Fig. 4. In Fig. 8, we use
three steps to achieve the wgt max scan. First, we conduct
a preliminary round of inter-vector weighted scan on v1 and
v2 with initial weight θ + β and extensive weight β. The
results will be stored in the intermediate vectors u1 and
u2. Second, an intra-vector and exclusive weighted scan is
performed on vector u2 with the weight of k ∗ β, where k
is the total number of vectors. The results are stored in s.
Third, the last round of inter-vector and exclusive weighted
broadcast is performed on s, u1 and u2 with the weight of
β. The final scan results are stored in arrT1.

Weighted scan result
(in original order)

wgt_max_scan (arrT,arrScan,i,𝛽,𝜃)

a+𝜃+𝛽

i+𝜃+𝛽

Striped:

1. Inter-vector weighted scan

+2𝛽 +2𝛽 +2𝛽

2. Intra-vector weighted scan

3. Inter-vector
weighted
broadcast

av1

v2

u1

u2

sr1

r2

u1=v1+vGap𝜃+vGap𝛽

u2=max(v2+vGap𝜃+vGap𝛽 , u1+vGap𝛽)

s1=i+𝜃+𝛽 s2=max(u21,s1+2𝛽)
s3=max(u22,s2+2𝛽) s4=max(u23,s3+2𝛽)

r1=s
r2=u1+(s+vGap𝛽)

c e g

b d f h

c+𝜃+𝛽 e+𝜃+𝛽 g+𝜃+𝛽

c+𝜃+2𝛽
d+𝜃+𝛽

e+𝜃+2𝛽
f+𝜃+𝛽

g+𝜃+2𝛽
h+𝜃+𝛽

a+𝜃+2𝛽
b+𝜃+𝛽

i+𝜃+3𝛽
a+𝜃+2𝛽
b+𝜃+𝛽

i+𝜃+5𝛽
a+𝜃+4𝛽
…
d+𝜃+𝛽

i+𝜃+7𝛽
a+𝜃+6𝛽
…
f+𝜃+𝛽

i+𝜃+𝛽

i+𝜃+3𝛽
a+𝜃+2𝛽
b+𝜃+𝛽

i+𝜃+5𝛽
a+𝜃+4𝛽
…
d+𝜃+𝛽

i+𝜃+7𝛽
a+𝜃+6𝛽
…
f+𝜃+𝛽

i+𝜃+𝛽

i+𝜃+4𝛽
a+𝜃+3𝛽
b+𝜃+2𝛽
c+𝜃+𝛽

i+𝜃+6𝛽
a+𝜃+5𝛽
…
e+𝜃+𝛽

i+𝜃+8𝛽
a+𝜃+7𝛽
…
g+𝜃+𝛽

i+𝜃+2𝛽
a+𝜃+𝛽

i+𝜃+3𝛽
a+𝜃+2𝛽
b+𝜃+𝛽

i+𝜃+5𝛽
a+𝜃+4𝛽
…
d+𝜃+𝛽

i+𝜃+7𝛽
a+𝜃+6𝛽
…
f+𝜃+𝛽

i+𝜃+𝛽

i+𝜃+4𝛽
a+𝜃+3𝛽
b+𝜃+2𝛽
c+𝜃+𝛽

i+𝜃+6𝛽
a+𝜃+5𝛽
…
e+𝜃+𝛽

i+𝜃+8𝛽
a+𝜃+7𝛽
…
g+𝜃+𝛽

i+𝜃+2𝛽
a+𝜃+𝛽

arrScan

a c e g b d f h

arrT
a b c d e f g hOriginal: i

Figure 8: Orchestration mechanism in the wgt max scan (Maximum operations are
applied on each cell)

D. Code Translation

The AAlign framework takes the sequential codes fol-
lowing our generalized paradigm as the input. After the
analysis of the codes, the framework will decide how to
modify the vector code constructs. We make use of Clang
driver [10] to create the Abstract Syntax Tree (AST) for
both the sequential codes and vector code constructs, shown
in Fig. 3. To traverse the trees, we build our Matcher and
Visitor classes in Clang’s AST Consumer class. Once the
information from the AST nodes of interest is identified and
retrieved, we use our Rewriter class to modify the AST tree
of the vector code constructs with the information and its
derivative results. Note, present framework only supports
the constant gap penalties (e.g., βi,k, θi,l). We will leave
it to future work to support variable penalties used in, for
example, the dynamic time warping (DTW) algorithm.

Tab.II shows the configurable expressions in Alg. 2 and
Alg. 3. The information can be retrieved from the sequential
codes in four groups: 1. Identify which type of the pairwise
alignment algorithm is used: local or global. This can be
done by checking if there is a constant 0 set to T or not. 2.
Identify what kind of gap penalty system is used. We can
check if θ is set to 0 or not (row 1-4 in Tab.II). 3. Learn how
to initialize the boundary values (row 5,6). 4. Derive other
information of how to organize the vectors (row 7-11). After
the vector code constructs have been rewritten, we use the
hybrid method to generate our pairwise sequence alignment
kernels.

E. Multi-threaded version

The AAlign framework can also utilize the thread-level
parallelism of the multi- and many-cores to align a given
query with all subject sequences in a database. We first
assign the generated kernel to each thread, and a thread
will get a subject sequence from the database to conduct
the alignment until all subject sequences are aligned. After

 0

 2

 4

 6

 8

 10

 12

Q500 Q1000 Q2000 Q4000

Sp
ee

du
ps

Queries

aalign-iterate (affine)
aalign-scan (affine)

aalign-iterate (linear)
aalign-scan (linear)

(a) SW (CPU)

 0

 2

 4

 6

 8

 10

 12

Q500 Q1000 Q2000 Q4000

Sp
ee

du
ps

Queries

aalign-iterate (affine)
aalign-scan (affine)

aalign-iterate (linear)
aalign-scan (linear)

(b) NW (CPU)

 0

 5

 10

 15

 20

 25

 30

Q500 Q1000 Q2000 Q4000

Sp
ee

du
ps

Queries

aalign-iterate (affine)
aalign-scan (affine)

aalign-iterate (linear)
aalign-scan (linear)

(c) SW (MIC)

 0

 5

 10

 15

 20

 25

 30

Q500 Q1000 Q2000 Q4000

Sp
ee

du
ps

Queries

aalign-iterate (affine)
aalign-scan (affine)

aalign-iterate (linear)
aalign-scan (linear)

(d) NW (MIC)

Figure 9: AAlign codes vs. Baseline sequential codes. The baselines are different and they are optimized to follow the similar logic with the corresponding AAlign codes.

Table II: Configurable expressions in vector code contructs

Expression Description & Format Example*

GAP LEFT Gap penalty from the left T cell (i.e.
θ′+β′); constants or variables

GAPOPEN (ln.7)

GAP UP Gap penalty from the upper T cell (i.e.
θ+β); constants or variables

GAPOPEN (ln.8)

GAP LEFT EXT Gap penalty from the left L cell (i.e. β′);
constants or variables

GAPEXT (ln.7)

GAP UP EXT Gap penalty from the upper U cell (i.e. β);
constants or variables

GAPEXT (ln.8)

INIT T Upper boundary value of T cell; func(i) 0 (ln.2)
INIT U Upper boundary value of U cell; func(i) 0 (ln.2)
MAX OPRD Operands required by the max operation;

vec variables
vU, vL, vZero

REC FILL Value to fill the right shifted gap; constant GAPOPEN (ln.8)
REC UP Operand for checking the re-computation;

vec variable
vU

REC UP GAP Gap operand for REC UP; vec variable vGapU
REC CRIT Criterion for checking re-computation; vec

variable
vGapTup-vGapU

*: The examples are fetched or derived from Alg. 1

we sort the database by the subject sequence length, this
dynamic binding mechanism is extremely efficient because
of the load balance among threads. For the implementation,
we don’t need to create the profile array of substitution
matrix for the query every time (prof in ln. 17 of Alg. 2 or
ln. 10 of Alg. 3). Therefore, the only change of the kernel
is to extract the part of building profile array and perform it
once before launching multiple threads.

VI. EVALUATION

In the section, we evaluate the AAlign-generated pairwise
sequence alignment codes on Haswell CPU and Knights
Corner MIC. For Haswell, we use 2 sockets of E5-2680 v3,
which totally contain 24 cores running on 2.5 GHz with 128
GB DDR3 memory. Each core has 32 KB L1, 256 KB L2,
and shares 30 MB L3 cache. For MIC, we use the Intel Xeon
Phi 5110P coprocessor in the native mode. The coprocessor
consists of 60 cores running on 1.05 GHz with 8 GB GDDR5
memory, and each core includes 32 KB L1 and 512 KB L2
cache. We use icpc in Intel compiler 15.3 with -O3 option
to compile the codes. To specialize the desired vector ISA,
we also include -xCORE-AVX2 for CPU and -mmic for MIC.
All the sequences are from NCBI-protein database [11]. The
number of characters is integrated into the query name.

Our objectives include: (1) Compare AAlign-generated

codes with the optimized sequential codes. (2) Compare
the proposed hybrid method with the iterate and scan
method, respectively. (3) Compare multi-threaded versions
of AAlign-generated codes with the existing tools.

A. Speedups from Our Framework

We first compare the AAlign-generated codes (32-bit
int) with the sequential codes (32-bit int) to evaluate the
vectorization efficiency. The subject sequence is a Q282. The
sequential codes are following the same logic of the vector
codes. We also add “#pragma vector always” in the inner-
loop of the codes. The speedups, shown in Fig. 9, are the
performance benefits brought by the AAlign using striped-
iterate and striped-scan respectively. By using the striped-
scan, the SW and NW can achieve an average of 4.8 and
13.6-fold speedups over the sequential codes on CPU and
MIC respectively. In contrast, the speedups of the striped-
iterate SW and NW vary in a wider range of 4.7 to 10-fold on
CPU and 9.5 to 25.9-fold on MIC. The superlinear speedups
of the striped-iterate are mainly because the striped-iterate
avoids a considerable amount of computation along the Q
if the influence test fails.

We can see that the performance variance of the striped-
scan is smaller than the striped-iterate. For example, though
the SW approximates the NW in terms of computational
workloads, the performance of the striped-iterate SW-affine
(Fig. 9c) and NW-affine (Fig. 9d) changes a lot, while
the striped-scan keeps relatively consistent. Actually, the
performance difference of the two methods depends on
the processed numerical values which are affected by the
algorithms, gap systems, and input sequences.

B. Performance for Pairwise Alignment

In the preceding section, we observe that the algorithm
and gap penalty system will affect the choice of the better
vectorizing strategy. This section changes the input se-
quences. We first borrow the concepts of query coverage
(QC) and max identity (MI) [12] from the bioinformatics
community to describe the similarity of the input sequences.
QC means the percent of query sequence Q overlapping the
subject S, while the MI is the percentage of the similarity
between Q and S over the length of the overlapped area.

 0.5

 1

 1.5

 2

 2.5

 3

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (sw-linear)
aalign-iterate (sw-linear)
aalign-hybrid (sw-linear)

(a) SW w/ linear gap (CPU)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (sw-affine)
aalign-iterate (sw-affine)
aalign-hybrid (sw-affine)

(b) SW w/ affine gap (CPU)

 0.5

 1

 1.5

 2

 2.5

 3

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (nw-linear)
aalign-iterate (nw-linear)
aalign-hybrid (nw-linear)

(c) NW w/ linear gap (CPU)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (nw-affine)
aalign-iterate (nw-affine)
aalign-hybrid (nw-affine)

(d) NW w/ affine gap (CPU)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (sw-linear)
aalign-iterate (sw-linear)
aalign-hybrid (sw-linear)

(e) SW w/ linear gap (MIC)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (sw-affine)
aalign-iterate (sw-affine)
aalign-hybrid (sw-affine)

(f) SW w/ affine gap (MIC)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (nw-linear)
aalign-iterate (nw-linear)
aalign-hybrid (nw-linear)

(g) NW w/ linear gap (MIC)

 0

 10

 20

 30

 40

 50

 60

hi_hi
hi_md

hi_lo
md_hi

md_md

md_lo
lo_hi

lo_md
lo_lo

Ex
ec

ut
io

n
Ti

m
es

 (
m

s)

Queries

aalign-scan (nw-affine)
aalign-iterate (nw-affine)
aalign-hybrid (nw-affine)

(h) NW w/ affine gap (MIC)

Figure 10: AAlign codes using striped-iterate, striped-scan, and hybrid method. The x-axis represents the similarity of the two sequences using the format of QC MI in which
the query coverage (QC) and max identity (MI) metrics are in three levels: high (>70%), medium (70%-30%), and low(<30%)

Additionally, we define three ranges of hi(>70%), md(70%-
30%), and lo(<30%). That way, we have 9 combinations
of QC MI to represent the similarity and dissimilarity of
two input sequences. For example, lo hi means only a
small portion of two sequences overlaps each other, but the
overlapped areas are highly similar. In the experiment, we
use Q2000 against the “nr” database using NCBI-BLAST
[12] and pick out 9 typical subjects for the aforementioned
criteria.

Fig. 10 shows the performance of AAlign using different
vectorizing strategies, including striped-iterate, striped-scan,
and hybrid, on CPU and MIC. For the alignment algorithms
with linear gap penalty, the striped-iterate method always
outperforms the striped-scan, because the effects of the
zero θ cause the number of re-computations falling into
a very small number. The results also show that with the
linear gap penalty, our hybrid method will fall back to
the striped-iterate and has very similar performance with
it. For the algorithms with affine gap penalty, the striped-
scan is better than the striped-iterate when two sequences
have high or medium scores of QC and MI, meaning that
the input sequences are very similar. For example, for
the sequences labeled as hi hi, hi md, md hi, md md, in
Fig. 10b,10d,10f,10h, the striped-scan is the better solution,
thanks to its fixed rounds of re-computation. In the cases of
the NW with the affine gap, the striped-scan can deliver up to
3.5 fold speedup on MIC and up to 1.9 fold speedup on CPU
over the striped-iterate. For other inputs (dissimilar input
sequences), the striped-iterate is better. Because the hybrid
method can automatically switch to the better solution, in
most test cases, the hybrid method has better performance
than either of the striped-iterate and striped-scan method.

In the corner cases, the hybrid method approximates to the
better solution instead of the worse one.

C. Performance for Multi-threaded Codes

In the section, we compare AAlign’s multi-threaded SW
with affine gap penalty system with the tools of SWPS3
and SWAPHI. The database is the “swiss-prot” containing
more than 570k sequences [13]. SWPS3 [4] uses a modified
version of the striped-iterate method working on CPUs.
The buffers of the table T are of char and short data
types. SWAPHI [5] supports both inter-sequence and intra-
sequence vectorization in the multi-threaded on MIC. In the
experiment, we only focus on their intra-sequence method of
int data type. Correspondingly, we use our generated kernel
of short and int data type on CPU and MIC respectively.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Q500 Q1000 Q2000 Q4000

GC
UP

S

Queries

aalign-hybrid
swps3

(a) vs. SWPS3 on CPU

 0

 10

 20

 30

 40

 50

 60

Q500 Q1000 Q2000 Q4000

GC
UP

S

Queries

aalign-hybrid
swaphi 1.0.4

(b) vs. SWAPHI on MIC

Figure 11: AAlign Smith-Waterman w/ affine gap vs. existing highly-optimized tools

Fig. 11 presents the results of AAlign SW algorithms
comparing with the two highly-optimized tools. On the CPU,
the generated AAlign codes can outperform the SWPS3 for
up to 2.5 times, especially for the short query sequences.
However, in Fig. 11a, for the long sequences Q4000, SWPS3
is better. This mainly because rather than working entirely

on the short data type (16 bits), SWPS3 also uses the char-
type (8 bits) buffers. Only when the overflow occurs, the
tool will switch to the short. This is especially beneficial for
long query sequences by lowering the cache pressure. For
the MIC, we can outperform the SWAPHI on an average
of 1.6 times, thanks to our hybrid method and the efficient
vector modules.

VII. RELATED WORK

To fully utilize the computing power of modern accelera-
tors, it is crucial to utilize the SIMD units within. However,
the low programmability are still obstacles facing non-expert
programmers. Though some applications can naturally enjoy
the benefits brought by the compiler auto-vectorization tech-
niques [14], there are still many applications not belonging
to this category. As a result, programmers have to smartly
design and hand-code the SIMD codes. [15] propose a fast
SIMD sorting algorithm using CPU vector instrinsics. [5],
[6], [7] works on the Smith-Waterman by manually writing
compiler instrinsics and GPU kernel codes. Heinecke et
al.[16] optimize the Linpack Benchmark by using assem-
bly codes on MIC. Unfortunately, explicitly writing vector
codes is still not productive and portable. Some compiler-
based solutions are proposed to ease the situation. Polyhdral
compiler [17] uses a set of loop transformation, optimization
and vectorization to generate efficient codes. ISPC [18]
provides SIMD-friendly data structures and function APIs.
However, these solutions still require the expert knowledge
of vectorization and applications.

Other research works focus on the specialized vectoriza-
tion patterns and code generation. Ren et al.[19] present a
set of novel code transformations to facilitate vectorization
of recursive programs. PeerWave [20] explores the wave-
front parallelism on GPUs including intra-tile parallelism
on SIMD units. Ren et al.[21] propose a code generation
and optimization engine targeting at using SIMD resources
for the irregular data-traversal applications. ASPaS [22] are
designed to generate optimized and efficient vector codes
for the sorts. Compared to the existing work, the distinctive
aspects of our work are to automatically generate the vector
codes based on different vectorizing strategies. Our solution
is able to switch among these strategies no mater the selected
algorithms, configurations, and inputs in the runtime. In
addition, our codes are portable among different x86-based
systems.

VIII. CONCLUSION

The AAlign framework is specialized for the pairwise
alignment algorithms on the modern x86-based processors.
The framework can generate the vector codes based on
“striped-iterate” and “striped-scan”. Moreover, we design
an input-agnostic hybrid method, which can take advantage
of both the vectorization strategies. The generated codes
will be linked to a set of platform-specific vector modules.

To do this, the AAlign only needs the input sequential
codes following our generalized paradigm. The results show
that the vector codes can deliver considerable performance
gains over the sequential counterparts by utilizing the data-
level parallelism and decreasing the amount of computation.
We also demonstrate that our hybrid method is able to
automatically switch to the better vectorization strategy at
runtime. Finally, compared to the existing highly-optimized
multi-threaded tools, the multi-threaded AAlign codes can
also achieve competitive performance. In the future, we plan
to put more effort on optimizing the alignment for the long
sequences being identified by bioinformatics communities.

REFERENCES

[1] T. F. Smith and M. S. Waterman, “Identification of Common Molecular
Subsequences,” Journal of molecular biology, 1981.

[2] S. B. Needleman and C. D. Wunsch, “A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins,” Journal
of molecular biology, 1970.

[3] P. Rice, I. Longden, A. Bleasby et al., “Emboss: the european molecular biology
open software suite.”

[4] A. Szalkowski, C. Ledergerber, P. Krhenbhl, and C. Dessimoz, “SWPS3 fast
multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and 86/SSE2,”
BMC Res Notes, 2008.

[5] Y. Liu and B. Schmidt, “SWAPHI: Smith-waterman protein database search
on Xeon Phi coprocessors,” in the Int’l Conf. on Application-specific Systems,
Architectures and Processors (ASAP), 2014.

[6] M. Farrar, “Striped Smith-Waterman Speeds Database Searches Six Times over
other SIMD Implementations,” Bioinformatics, 2007.

[7] A. Khajeh-Saeed, S. Poole, and J. B. Perot, “Acceleration of the Smith-
Waterman Algorithm using Single and Multiple Graphics Processors,” Journal
of Computational Physics, 2010.

[8] R. Rahman, Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for
Application Developers, 1st ed. Apress, 2013.

[9] Intel. Intel Architecture Instruction Set Extensions Programming Reference.
Document ID: 319433-023.

[10] Clang: a C Language Family Frontend for LLVM. http://clang.llvm.org/.
[11] NCBI-protein. http://blast.ncbi.nlm.nih.gov/protein,.
[12] BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi.
[13] UniProt: Universal Protein Resource. http://www.uniprot.org/.
[14] K. Hou, H. Wang, and W. chun Feng, “Delivering Parallel Programmability to

the Masses via the Intel MIC Ecosystem: A Case Study,” in The 43rd IEEE
Int’l Conf. on Parallel Processing Workshops (ICCPW), 2014.

[15] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen,
A. Baransi, S. Kumar, and P. Dubey, “Efficient Implementation of Sorting on
Multi-core SIMD CPU Architecture,” Proc. of the VLDB Endowment (PVLDB),
2008.

[16] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov,
G. Henry, A. G. Shet, G. Chrysos, and P. Dubey, “Design and Implementation of
the Linpack Benchmark for Single and Multi-node Systems based on Intel Xeon
Phi Coprocessor,” in the IEEE Int’l Symp. on Parallel & Distributed Processing
(IPDPS), 2013.

[17] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P. Sadayappan,
“When Polyhedral Transformations Meet SIMD Code Generation,” in Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2013.

[18] M. Pharr and W. Mark, “ispc: A SPMD compiler for high-performance CPU
programming,” in Innovative Parallel Computing (InPar), 2012.

[19] B. Ren, Y. Jo, S. Krishnamoorthy, K. Agrawal, and M. Kulkarni, “Efficient Exe-
cution of Recursive Programs on Commodity Vector Hardware,” in Proc. of the
ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), 2015.

[20] M. E. Belviranli, P. Deng, L. N. Bhuyan, R. Gupta, and Q. Zhu, “PeerWave:
Exploiting Wavefront Parallelism on GPUs with Peer-SM Synchronization,” in
Proc. of the ACM on Int’l Conf. on Supercomputing (ICS), 2015.

[21] B. Ren, T. Mytkowicz, and G. Agrawal, “A Portable Optimization Engine
for Accelerating Irregular Data-Traversal Applications on SIMD Architectures,”
ACM Trans. Archit. Code Optim. (TACO), 2014.

[22] K. Hou, H. Wang, and W.-c. Feng, “ASPaS: A Framework for Automatic
SIMDization of Parallel Sorting on x86-based Many-core Processors,” in Proc.
of the ACM Int’l Conf. on Supercomputing (ICS), 2015.

